Journal of Applied Electrochemistry

, Volume 42, Issue 11, pp 945–951 | Cite as

Effect of pyrolysis temperature on cobalt phthalocyanine supported on carbon nanotubes for oxygen reduction reaction

  • Lakshmana Naik Ramavathu
  • Kranthi Kumar Maniam
  • Keerthiga Gopalram
  • Raghuram Chetty
Original Paper


Cobalt phthalocyanine (CoPc)-impregnated functionalized multi-walled carbon nanotubes (CNTs) were used as nonprecious electrocatalysts for oxygen reduction reaction (ORR). The electrocatalysts were thermally treated at temperatures ranging from 450 to 850 °C, and the effect of pyrolysis temperature and their relationship to the electrocatalytic activity for ORR were investigated. Thermo gravimetric analysis, X-ray diffraction, and electron microscopy were used to study the thermal stability, crystal structure, and morphology of these catalysts. Cyclic voltammetry and rotating disk electrode results showed that CoPc/CNTs pyrolyzed at a temperature of 550 °C had the highest electrocatalytic activity for ORR, and the catalytic activity decreased with further increase in pyrolysis temperature. X-ray photoelectron spectroscopy showed decrease in functional groups at a temperature higher than 550 °C, correlating with the decreased catalytic activity. The result suggests that oxygen functional groups introduced by acid oxidation for anchoring the CoPc on CNT plays a major role in determining the electrocatalytic activity.


Oxygen reduction reaction Carbon nanotubes Cobalt phthalocyanine Cathode catalyst Fuel cells 



The authors’ sincere thanks go to the Industrial Consultancy and Sponsored Research (IC & SR) and the Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras for the financial support under the New Faculty Scheme. The authors also thank the staff members of the Sophisticated Analytical Instrument Facility (SAIF) at IIT Madras for their assistance with the physical characterization.


  1. 1.
    O’Hayre RP, Cha SW, Colella WG, Prinz FB (2008) Fuel cell fundamentals, 2nd edn. Wiley, HobokenGoogle Scholar
  2. 2.
    Wang B (2005) J Power Sources 152:1CrossRefGoogle Scholar
  3. 3.
    Payne TL, Benjamin TG, Garland NL, Kopasz JP (2008) ECS Trans 16:1081CrossRefGoogle Scholar
  4. 4.
    Loukrakpam R, Wanjala BN, Yin J, Fang B, Luo J, Shao M, Protsailo L, Kawamura T, Chen Y, Petkov V, Zhong CJ (2011) ACS Catal 1:562CrossRefGoogle Scholar
  5. 5.
    Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173:891CrossRefGoogle Scholar
  6. 6.
    Reeve RW, Christensen PA, Dickinson AJ, Hamnett A, Scott K (2000) Electrochim Acta 45:4237CrossRefGoogle Scholar
  7. 7.
    Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755CrossRefGoogle Scholar
  8. 8.
    Dong G, Huang M, Guan L (2012) Phys Chem Chem Phys 14:2557CrossRefGoogle Scholar
  9. 9.
    Orellana W (2012) Chem Phys Lett 541:81CrossRefGoogle Scholar
  10. 10.
    Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Int J Hydrogen Energy 37:4412CrossRefGoogle Scholar
  11. 11.
    Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) J Electrochim Acta 53:4937CrossRefGoogle Scholar
  12. 12.
    Maldonado S, Stevenson KJ (2004) J Phys Chem B 108:11375CrossRefGoogle Scholar
  13. 13.
    Bron M, Radnik J, Erdmann MF, Bogdanoff P, Fiechter SJ (2002) Electroanal Chem 535:113CrossRefGoogle Scholar
  14. 14.
    Baker R, Wilkinson DP, Zhang J (2008) Electrochim Acta 53:6906CrossRefGoogle Scholar
  15. 15.
    Lee K, Zhang L, Liu H, Hui R, Shi Z, Zhang J (2009) Electrochim Acta 54:4704CrossRefGoogle Scholar
  16. 16.
    Serp P, Corrias M, Kalck P (2003) Appl Catal A Gen 253:337CrossRefGoogle Scholar
  17. 17.
    Aviles F, Cauich RJV, Moo-Tah L, May PA, Vargas CR (2009) Carbon 47:2970CrossRefGoogle Scholar
  18. 18.
    Chetty R, Xia W, Kundu S, Bron M, Reinecke T, Schuhmann W, Muhler M (2009) Langmuir 25:3853CrossRefGoogle Scholar
  19. 19.
    Arechederra RL, Artyushkova K, Atanassov P, Minteer SD (2010) ACS Appl Mater Interfaces 2:3295CrossRefGoogle Scholar
  20. 20.
    Xu Z, Li H, Cao G, Zhang Q, Li K, Zhao X (2011) J Mol Catal A Chem 335:89CrossRefGoogle Scholar
  21. 21.
    Lu Y, Reddy RG (2007) Electrochim Acta 52:2562CrossRefGoogle Scholar
  22. 22.
    Kalvelage H, Mecklenburg A, Kunz U, Hoffmann U (2000) Chem Eng Technol 23:803CrossRefGoogle Scholar
  23. 23.
    Gouerec P, Savy M, Riga J (1998) Electrochim Acta 43:743CrossRefGoogle Scholar
  24. 24.
    Lalande G, Faubert G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1996) J Power Sources 61:227CrossRefGoogle Scholar
  25. 25.
    Li ZP, Liu BH (2010) J Appl Electrochem 40:475CrossRefGoogle Scholar
  26. 26.
    Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandl W, Reinecke T, Muhler M (2009) Electrochim Acta 54:4208CrossRefGoogle Scholar
  27. 27.
    Kundu S, Wang Y, Xia W, Muhler M (2008) J Phys Chem C 112:16869CrossRefGoogle Scholar
  28. 28.
    Achar BN, Lokesh KS, Fohlen GM, Mohan Kumar TM (2005) React Funct Polym 63:63CrossRefGoogle Scholar
  29. 29.
    Burgos FV, Utsumi S, Hattori Y, García X, Gordon AL, Kanoh H, Kaneko K, Radovic LR (2012) Fuel 99:106CrossRefGoogle Scholar
  30. 30.
    Lalande G, Cote R, Tamizhmani G, Guay D, Dodelet JP, Dignard BL, Weng LT, Bertrand P (1995) Electrochim Acta 40:2635CrossRefGoogle Scholar
  31. 31.
    Kobayashi M, Niwa H, Harada Y, Horiba K, Oshima M, Ofuchi H, Terakura K, Ikeda T, Koshigoe Y, Ozaki J, Miyata S, Ueda S, Yamashita Y, Yoshikawa H, Kobayashi K (2011) J Power Sources 196:8346CrossRefGoogle Scholar
  32. 32.
    Baranton S, Coutanceau C, Roux C, Hahn F, Leger JM (2005) J Electroanal Chem 577:223CrossRefGoogle Scholar
  33. 33.
    Yu EH, Cheng S, Logan BE, Scott K (2009) J Appl Electrochem 39:705CrossRefGoogle Scholar
  34. 34.
    Petraki F, Kennoua S (2009) Org Electron 10:1382CrossRefGoogle Scholar
  35. 35.
    Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y (2006) J Chem Phys 125:034709CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lakshmana Naik Ramavathu
    • 1
  • Kranthi Kumar Maniam
    • 1
  • Keerthiga Gopalram
    • 1
  • Raghuram Chetty
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations