Journal of Applied Electrochemistry

, Volume 42, Issue 12, pp 1013–1024 | Cite as

A novel experimental method for obtaining multi-layered TiO2 nanotubes through electrochemical anodizing

  • D. V. Portan
  • G. C. PapanicolaouEmail author
  • G. Jiga
  • M. Caposi
Original Paper


In this study, a new parameter having influence on the TiO2 nanotubes formation process is reported. Except of previously mentioned and well-known anodizing parameters such as voltage, time of anodizing, type of electrolyte, temperature, etc., samples’ configuration in the electrochemical cell represents an important factor in the anodizing procedure. The electrochemical anodization is a group of interconnected processes and factors, each one of them having its specific weight on the final result. It was observed that the very short distance in between two titanium plates connected to the anodic terminal of the electrochemical cell is the decisive factor for creating superimposed TiO2 nanotube layers. More precisely, it was found that the configuration of two parallel Ti plates being in close contact to each other, mounted to the anodic terminal and in parallel with the graphite cathode, favors the formation through electrolysis of multi-layered TiO2 nanotubes. The microscopic observation of multi-layered TiO2 nanotubes was performed through the removal of the upper layer of nanotubes using sonication. This peculiar result was interpreted using existed theories such as First Fick’s law and Nerst diffusion layer in combination with recently published research findings related to the effect of inter-electrode distance.


Anodizing titanium Multi-layered TiO2 nanotubes Inter-electrode distance 



We express our recognition to Prof. N. Bouropoulos, Department of Materials Science (University of Patras), to Dr. Drakopoulos (FORTH/ICEHT Institute of the University of Patras) for technical support with SEM images and also to Ms. T. Arvanita for her support in performing the experiments.


  1. 1.
    Xu L, Shi J, Cao WQ, Wang MQ, Hui WJ, Dong H (2011) Yield strength enhancement of martensitic steel through titanium addition. J Mater Sci 46:658–3653. doi: 10.1007/s10853-011-5282-5 Google Scholar
  2. 2.
    Henriques VAR, de Campos PP, Cario AA, Bressiani JC (2005) Production of titanium alloys for advanced aerospace systems by powder metallurgy. J Mater Res 8(4):443–446Google Scholar
  3. 3.
    Liua X, Chub PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. J Mater Sci Eng R 47:49–121. doi: 10.1016/j.mser.2004.11.001 CrossRefGoogle Scholar
  4. 4.
    Mindroiu VM, Pirvu C, Popescu S, Demetrscu I (2010) Polypyrrole electrodeposition on Ti6Al7Nb alloy in aqueous and non-aqueous solutions. J Rev Chim 6:390–394Google Scholar
  5. 5.
    Koller G, Cook RJ, Thompson ID, Watson TF, Di Silvio L (2007) Surface modification of titanium implants using bioactive glasses with air abrasion technologies. J Mater Sci Mater Med 18:2291–2296. doi: 10.1007/s10856-007-3137-z CrossRefGoogle Scholar
  6. 6.
    Chen Y, Sun Y, Zhao B, Wan H, Wu D (2011) Surface modification of titanium by using plasma-induced graft-polymerization. J Surf Interface Anal 43(13):1566–1574. doi: 10.1002/sia.3750 CrossRefGoogle Scholar
  7. 7.
    Kontos AG, Likodimos V, Vassalou E, Kapogianni I, Raptis YS, Raptis C, Falara P (2011) Nanostructured titania films sensitized by quantum dot chalcogenides. J Nanoscale Res Lett 6:266. doi: 10.1186/1556-276X-6-266 CrossRefGoogle Scholar
  8. 8.
    Su X, Wu QL, Zhan X, Wu J, Wei S, Guo Z (2012) Advanced titania nanostructures and composites for lithium ion battery. J Mater Sci 47:2519–2534. doi: 10.1007/s10853-011-5974-x CrossRefGoogle Scholar
  9. 9.
    Perathoner S, Passalacqua R, Centi G, Su D, Weinberg G (2007) Photoactive titania nanostructured thin films: synthesis and characteristics of ordered helical nanocoil array. J Catalysis Today 122:3–13CrossRefGoogle Scholar
  10. 10.
    Kijima T (2010) Inorganic and metallic nanotubular materials. Springer, BerlinGoogle Scholar
  11. 11.
    Xie Y, Fu D (2010) Photoelectrocatalysis reactivity of independent titania nanotubes. J Appl Electrochem 40(7):1281–1291CrossRefGoogle Scholar
  12. 12.
    Li Y, Yu X, Yang Q (2009) Fabrication of TiO2 nanotube thin films and their gas sensing properties. J Sensors. doi: 10.1155/2009/402174 Google Scholar
  13. 13.
    Asmatulu R, Karthikeyan A, Bell DC, Ramanathan S, Aziz MJ (2009) Synthesis and variable temperature electrical conductivity studies of highly ordered TiO2 nanotubes. J Mater Sci 44:4613–4616. doi: 10.1007/s10853-009-3703-5 CrossRefGoogle Scholar
  14. 14.
    Alivov Y, Fan ZY (2009) Dye-sensitized solar cells using TiO2 nanoparticles transformed from nanotube arrays. J Mater Sci 45:2902–2906. doi: 10.1007/s10853-010-4281-2 CrossRefGoogle Scholar
  15. 15.
    Kim J-Y, Sekino T, Tanaka S-I (2011) Influence of the size-controlled TiO2 nanotubes fabricated by low-temperature chemical synthesis on the dye-sensitized solar cell properties. J Mater Sci 46:1749–1757. doi: 10.1007/s10853-010-4994-2 CrossRefGoogle Scholar
  16. 16.
    Flores IC, de Freitas JN, Longo C, De Paoli MA (2007) Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. J Photochem Photobiol, A 189:153–160CrossRefGoogle Scholar
  17. 17.
    Wang N, Li H, Lü W, Li J, Wang J, Zhang Z, Liu Y (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. J Biomater 32:11–6900Google Scholar
  18. 18.
    Portan DV, Kroustalli AA, Deligianni DD, Papanicolaou GC (2012) On the biocompatibility between TiO2 nanotubes layer and human osteoblasts. J Biomed Mater Res A. doi:10.1002/jbm.a.34188 (in press)
  19. 19.
    Song Y-Y, Gao Z-D, Wang J-H, Xia X-H, Lynch R (2011) Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles. J Adv Funct Mater 21:1941–1946. doi: 10.1002/adfm.201002258 CrossRefGoogle Scholar
  20. 20.
    Hu MZ, Lai P, Bhuiyan MS, Tsouris C, Gu B, Paranthaman MP, Gabitto J, Harrison L (2009) Synthesis and characterization of anodized titanium-oxide nanotube arrays. J Mater Sci 44:2820–2827. doi: 10.1007/s10853-009-3372-4 CrossRefGoogle Scholar
  21. 21.
    Tsai C-C, Teng H (2006) Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. J Chem Mater 18:367–373. doi: 10.1021/cm0518527 CrossRefGoogle Scholar
  22. 22.
    Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259. doi: 10.1021/jp0772732 CrossRefGoogle Scholar
  23. 23.
    Hun Park, Ho-Gi Kim (2010) Characterizations of highly ordered TiO2 nanotube arrays obtained by anodic oxidation. J Trans Electr Electron Mater 11:112–115CrossRefGoogle Scholar
  24. 24.
    Tacchini I, Terrado E, Ansón A, Martínez MT (2011) Anatase nanotubes synthesized by a template method and their application as a green photocatalyst. J Mater Sci 46:2097–2104. doi: 10.1007/s10853-010-5044-9 CrossRefGoogle Scholar
  25. 25.
    Hoyer P (1996) Formation of a titanium dioxide nanotube array. J Langmuir 12:1411–1413. doi: 10.1021/la9507803 CrossRefGoogle Scholar
  26. 26.
    Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2972. doi: 10.1039/A906005G CrossRefGoogle Scholar
  27. 27.
    Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. J Chem Mater 14:1445–1447. doi: 10.1021/cm011625e CrossRefGoogle Scholar
  28. 28.
    Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686. doi: 10.1007/s10853-011-5378-y CrossRefGoogle Scholar
  29. 29.
    Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377. doi: 10.1039/B406378C CrossRefGoogle Scholar
  30. 30.
    Niu L, Shao M, Wang S, Lu L, Gao H, Wang J (2008) Titanate nanotubes: preparation, characterization, and application in the detection of dopamine. J Mater Sci 43:1510–1514. doi: 10.1007/s10853-007-2374-3 CrossRefGoogle Scholar
  31. 31.
    Hosseini M, Momeni MM, Faraji M (2010) An innovative approach to electro-oxidation of dopamine on titanium dioxide nanotubes electrode modified by gold particles. J Appl Electrochem 40(7):1421–1427CrossRefGoogle Scholar
  32. 32.
    Kim JC, Choi J, Lee YB, Hong JH, Lee JI, Yang JW, Lee WI, Hur NH (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes CdS nanoparticles. J Chem Commun 48:5024–5026CrossRefGoogle Scholar
  33. 33.
    Wang Y, Wu Y, Xu G, Qin Y,Zheng H, Cui J, Hong Y, Liu L, Shu X, Zheng Y, Huang X (2011) A facile route to accelerate the formation of TiO2 nanotube arrays. 3rd International photonics & opto electronics meetings (POEM 2010). J Phys: Conf Ser 276:012047Google Scholar
  34. 34.
    Chen R, Hu L, Huo K, Chu PK (2010) Electrochemical behaviors of composite electrode of TiO2 nanotube arrays and carbon nanoparticles. 3rd International nanoelectronics conference (INEC), Hong Kong, 2010, pp 1293–1294, 3–8 Jan 2010Google Scholar
  35. 35.
    Brammera KS, Ohd S, Cobba CJ, Bjurstenb LM, van der Heydec H, Jina S (2009) Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. J Acta Biomater 5(8):3215–3223CrossRefGoogle Scholar
  36. 36.
    Kaneco S, Chen Y, Westerhoff P, Crittenden JC (2007) Fabrication of uniform size titanium oxide nanotubes: impact of current density and solution conditions. J Scr Mater 56(2007):373–376CrossRefGoogle Scholar
  37. 37.
    Roguska A, Kudelski A, Pisarek M, Lewandowsk M, Dolata M, Janik-Czachora M (2009) Raman investigations of TiO2 nanotube substrates covered with thin Ag or Cu deposits. J Raman Spectrosc 40:1652–1656. doi: 10.1002/jrs.2314 CrossRefGoogle Scholar
  38. 38.
    Foong TRB, Shen Y, Hu X, Sellinger A (2010) Template-directed liquid ALD growth of TiO2 nanotube arrays: properties and potential in photovoltaic devices. J Adv Funct Mater 20:1390–1396CrossRefGoogle Scholar
  39. 39.
    Chen J, Lin J, Chen X (2010) Self-assembled TiO2 nanotube arrays with U-shaped profile by controlling anodization temperature. J Nanomater. doi: 10.1155/2010/753253 Google Scholar
  40. 40.
    Lin C-J, Yu W-Y, Chien S-H (2008) Rough conical-shaped TiO2-nanotube arrays for flexible backilluminated dye-sensitized solar cells. J Appl Phys Lett 93:133107. doi: 10.1063/1.2992585 CrossRefGoogle Scholar
  41. 41.
    Nunzi F, De Angelis F (2011) DFT investigations of formic acid adsorption on single-wall TiO2 nanotubes: effect of the surface curvature. J Phys Chem C 115:2179–2186CrossRefGoogle Scholar
  42. 42.
    Kim H, Noh K, Choi C, Khamwannah J, Villwock D, Jin S (2011) Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes. J Langmuir 27(16):10191–10196. doi: 10.1021/la2014978 CrossRefGoogle Scholar
  43. 43.
    Yu K, Chen J (2009) Enhancing solar cell efficiencies through 1-D nanostructures. J Nanoscale Res Lett 4(1):1–10. doi: 10.1007/s11671-008-9200-y CrossRefGoogle Scholar
  44. 44.
    Xu H, Xia T, Wang D-T, Zheng Y-Z, Chen J-F (2010) Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films. J Electrochim Acta 55:2280–2285CrossRefGoogle Scholar
  45. 45.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. J Nano Lett 6(2):215–218. doi: 10.1021/nl052099j CrossRefGoogle Scholar
  46. 46.
    Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. J Proc Nat Acad Sci USA 76(11):566–5665Google Scholar
  47. 47.
    Basu B, Katti DS, Kumar A (2009) Advanced biomaterials: fundamentals, processing and applications, outcome volume from international conference on design of biomaterials. Indian Institute of Technology Kanpur, India, 8–11th Dec 2006, Wiley, Hoboken. ISBN 978-0-470-19340-2Google Scholar
  48. 48.
    Lu HH, Spalazzi JP, Jeffrey P (2009) Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering. J Comb Chem High Throughput Screen 12(6):589–597Google Scholar
  49. 49.
    Wang X, Zhang S, Sun L (2011) A Two-step anodization to grow high-aspect-ratio TiO2 nanotubes. J Thin Solid Films 519:4694–4698CrossRefGoogle Scholar
  50. 50.
    Macak JM, Albu S, Kim DH, Paramasivam I, Aldabergerova S, Schmuki P (2007) Multilayer TiO2—nanotube formation by two-step anodization. J Electrochem Solid-State Lett 10(7):K28–K31CrossRefGoogle Scholar
  51. 51.
    Chen B, Lu K (2012) Hierarchically branched titania nanotubes with tailored diameters and branch numbers. J Langmuir 28(5):2937–2943CrossRefGoogle Scholar
  52. 52.
    Yang X, Qu Y, Fan Y, Liu X (2012) Y-branched TiO2 nanotube arrays synthesized by anodic Oxidation. J Sci China: Phys, Mech Astron 55(1):14–18CrossRefGoogle Scholar
  53. 53.
    Flynn GL, Yalkowsky SH, Roseman TJ (1974) Mass transport phenomena and models: theoretical concepts. J Pharm Sci 63(4):479–510CrossRefGoogle Scholar
  54. 54.
    Berthalot CL (1803) Eassai de Statique Chimique, De Demonville, ParisGoogle Scholar
  55. 55.
    Fick A (1855) Ann Physik, LeipzigGoogle Scholar
  56. 56.
    Portan DV, Papaefthymiou K, Arvanita E, Jiga G, Papanicolaou GC (2012) A combined statistical and microscopic analysis of TiO2 nanotubes synthesized under different electrochemical anodizing conditions. J Mater Sci. doi: 10.1007/s10853-012-6338-x Google Scholar
  57. 57.
    Lavelaine H, Allanore A (2008) Optimized design of an iron electrowinning cell. In: Proceedings of the 4th Ulcos seminar, 1–2 Oct 2008 SP13—new electricity-based steel production/no. 5–5, EssenGoogle Scholar
  58. 58.
    Popov KI, Pesic SM, Zivkovic PM (2002) The current distribution in an electrochemical cell. Part VII. Concluding remarks. J Serb Chem Soc 67(4):273–278CrossRefGoogle Scholar
  59. 59.
    Syrzycka M, Sjoerdsma M, Li PCH, Parameswaran M, Syrzycki M, Koch CAs, Utkhede RS (2003) Electronic concentration of negatively-charged molecules on a microfabricated biochip. J Anal Chim Acta 484:1–14CrossRefGoogle Scholar
  60. 60.
    Chen X, Chen G, Yue PL (2002) Investigation on the electrolysis voltage of electrocoagulation. J Chem Eng Sci 57:449–2455CrossRefGoogle Scholar
  61. 61.
    Raju T, Chung SJ, Moon Il Shik (2009) Electrochemical recovery of silver from waste aqueous Ag(I)/Ag(II) redox mediator solution used in mediated electro oxidation process. Korean J Chem Eng 26(4):1053–1057. doi: 10.1007/s11814-009-0175-x CrossRefGoogle Scholar
  62. 62.
    Pavlović MG, Popov KI, Krstić SB, Pavlović LjJ, Ivanović ER (2005) Flowability of electrolytic copper powder. J Mater Sci Forum 494:247–252. doi: 10.4028/ Google Scholar
  63. 63.
    Rajkumar SR, Alagar M, Kanagasabapathy M (2012) Current density distribution studies in manifold dimensions. J Chem Pharm Res 4(2):1173–1178Google Scholar
  64. 64.
    Nagaia N, Takeuchia M, Kimurab T, Okaa T (2003) Existence of optimum space between electrodes on hydrogen production by water electrolysis. Int J Hydrogen Energy 28:35–41Google Scholar
  65. 65.
    Mahrous A-FM, Sakr IM, Balabel A, Ibrahim K (2011) Experimental investigation of the operating parameters affecting hydrogen production process through alkaline water electrolysis. Int J Thermal Environ Eng 2(2):113–116Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • D. V. Portan
    • 1
  • G. C. Papanicolaou
    • 1
    Email author
  • G. Jiga
    • 2
  • M. Caposi
    • 3
  1. 1.Department of Mechanical and Aeronautics Engineering, Composite Materials Group (CMG)University of PatrasPatrasGreece
  2. 2.Faculty of Engineering and Management for Technological Systems, PolitehnicaPolitehnica University of BucharestBucharestRomania
  3. 3.Faculty of Applied Chemistry and Materials SciencePolitehnica University of BucharestBucharestRomania

Personalised recommendations