Journal of Applied Electrochemistry

, Volume 42, Issue 8, pp 585–593 | Cite as

Flow injection analysis with amperometric detection for iodide determination as a tracer in seawater reservoirs

  • Flávia C. de Souza
  • Davi Augusto Izidro da Silva
  • Márcia Simões
  • Roberto Barros Faria
  • Maria Aparecida de Melo
  • Roberta Maciel Toledo
  • Eliane D’Elia
Original Paper


In this study, an electrochemical method was developed using flow injection analysis and amperometric detection with screen-printed electrodes for iodide determination as a tracer in seawater reservoirs. The amperometric method resulted in a good linear correlation coefficient (r = 0.9966) with a linear response over a concentration range of 1–10 mg L−1, a limit of detection of 0.2 mg L−1 and a quantification of 0.6 mg L−1. In addition, the method has been shown to be precise, linear and homoscedastic. The recovery for the amperometric method was 100 ± 3 %, and the recovery for the produced water samples fortified with iodide was 102 ± 2 %. The amperometric method did not show interference from other anions. Thus, the proposed method is promising for analysing the iodide content of seawater reservoir samples with simple and inexpensive methodologies compared with ion chromatography techniques.


Iodide Reservoir tracers Amperometry Screen-printed electrodes Flow injection analysis 



F. C. de Souza would like to thank the Brazilian National Petroleum Agency (ANP) for a doctoral fellowship. The authors are grateful to the Brazilian National Counsel for Technological and Scientific Development (CNPq) and Petrobras for their financial support.


  1. 1.
    Leibundgut C, Seibert J (2011) Tracer hydrology. In: Wilderer P (ed) Treatise on water science, 1st edn. Elsevier, Amsterdam, pp 215–234CrossRefGoogle Scholar
  2. 2.
    Melo MA, Holleben CR, Almeida AR (2001) Using tracers to characterize petroleum reservoirs: application to Carmopolis field. Brazil. Soc Petrol Eng J. doi: 10.2118/69474-MS
  3. 3.
    Silva LL, Donnici CL, Ayala JD, Freitas CH, Moreira RM, Pinto AMF (2009) Traçadores: o uso de agentes químicos para estudos hidrológicos, ambientais, petroquímicos e biológicos. Quim Nova 32:1576–1585CrossRefGoogle Scholar
  4. 4.
    Smith JD, Butler ECV, Airey D, Sandars G (1990) Chemical properties of a low-oxygen water column in port hacking (Australia): arsenic, iodine and nutrients. Mar Chem 28:353–364CrossRefGoogle Scholar
  5. 5.
    Truesdale VW, Upstill-Goddard R (2003) Dissolved iodate and total iodine along the British east coast. Estuar Coast Shelf Sci 56:261–270CrossRefGoogle Scholar
  6. 6.
    Ito K (1997) Determination of iodide in seawater by ion chromatography. Anal Chem 69:3628–3632CrossRefGoogle Scholar
  7. 7.
    Ito K (1999) Semi-micro ion chromatography of iodide in seawater. J Chromatogr A 830:211–217CrossRefGoogle Scholar
  8. 8.
    Bruggink C, van Rossum WJM, Spijkerman E, van Beelen ESE (2007) Iodide analysis by anion-exchange chromatography and pulsed amperometric detection in surface water and adsorbable organic iodide. J Chromatogr A 1144:170–174CrossRefGoogle Scholar
  9. 9.
    Rebary B, Paul P, Ghosh PK (2010) Determination of iodide and iodate in edible salt by ion chromatography with integrated amperometric detection. Food Chem 123:529–534CrossRefGoogle Scholar
  10. 10.
    Tian RC, Nicolas E (1995) Iodine speciation in the northwestern Mediterranean Sea, method and vertical profile. Mar Chem 48:151–156CrossRefGoogle Scholar
  11. 11.
    Švancara I, Ogorevc B, Nović M, Vytřas K (2002) Simple and rapid determination of iodide in table salt by stripping potentiometry at a carbon-paste electrode. Anal Bioanal Chem 372:795–800CrossRefGoogle Scholar
  12. 12.
    Tomčík P, Bustin D (2001) Voltammetric determination of iodide by use of an interdigitated microelectrode array. Fresenius J Anal Chem 371:562–564CrossRefGoogle Scholar
  13. 13.
    Chailapakul O, Amatatongchai M, Wilairat P, Grudpan K, Nacapricha D (2004) Flow-injection determination of iodide ion in nuclear emergency tablets, using boron-doped diamond thin film electrode. Talanta 64:1253–1258CrossRefGoogle Scholar
  14. 14.
    Silva MLS, Garcia MBQ, Lima JLFC, Barrado E (2006) Flow system with electrochemical detection for determination of paracetamol in pharmaceutical preparations. Port Electrochim Acta 24:261–271CrossRefGoogle Scholar
  15. 15.
    Cervini P, Cavalheiro ETG (2008) Determination of paracetamol at a graphite-polyurethane composite electrode as an amperometric flow detector. J Braz Chem Soc 19:836–841CrossRefGoogle Scholar
  16. 16.
    Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:1067–1076CrossRefGoogle Scholar
  17. 17.
    Rao VK, Sharma MK, Pandey P, Sekhar K (2006) Comparison of different carbon ink based screen-printed electrodes towards amperometric immunosensing. World J Microbiol Biotechnol 22:1135–1143CrossRefGoogle Scholar
  18. 18.
    Nascimento VB, Angnes L (1998) Eletrodos fabricados por “silk-screen”. Quim Nova 21:614–629Google Scholar
  19. 19.
    Massart DL (1997) Handbook of chemometrics and qualimetrics: part A. Elsevier, New YorkGoogle Scholar
  20. 20.
    Miller JC, Miller JN (1993) Statistics for analytical chemistry. Prentice Hall, New YorkGoogle Scholar
  21. 21.
    Hanson KJ, Tobias CW (1987) Electrochemistry of iodide in propylene carbonate I. Cyclic voltammetry monitored by optical spectroscopy. J Electrochem Soc 134:2204–2210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Flávia C. de Souza
    • 1
  • Davi Augusto Izidro da Silva
    • 1
  • Márcia Simões
    • 1
  • Roberto Barros Faria
    • 1
  • Maria Aparecida de Melo
    • 2
  • Roberta Maciel Toledo
    • 2
  • Eliane D’Elia
    • 1
  1. 1.Instituto de Química, Centro de TecnologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.CENPES/PetrobrasRio de JaneiroBrazil

Personalised recommendations