Advertisement

Journal of Applied Electrochemistry

, Volume 42, Issue 6, pp 443–453 | Cite as

Investigation of design parameter effects on high current performance of lithium-ion cells with LiFePO4/graphite electrodes

  • Seungho Yu
  • Youngmin Chung
  • Min Seob Song
  • Jin Hyun Nam
  • Won Il Cho
Original Paper

Abstract

Electrode design is an essential task for successful development of lithium-ion batteries. Provided that the same materials are given, proper dimensioning of the electrodes and balanced composition of the materials in them can maximize the cell performance, such as the discharge capacity. However, many electrode design parameters have conflicting effects on the performance, and thus careful optimization of these parameters is required. This study experimentally investigated the effects of several electrode design parameters on the performance of lithium ion cells with a LiFePO4 cathode and a natural graphite anode, focusing on their high current operations. The conflicting effects of the conductor ratio (the weight fraction of electronic particle additives), electrode thickness, and electrode density (porosity) on the cell capacity were studied. In addition, a detailed one-dimensional electrochemical model was also used to simulate the observed performance characteristics and to identify their underlying mechanisms limiting the performance. Based on the experimental and numerical results, the optimal ranges for the electrode design parameters were discussed to achieve better performance of the LiFePO4/graphite batteries.

Keywords

Lithium-ion battery LiFePO4 Battery design parameter Electrode thickness Active material density Electrochemical modeling 

List of symbols

Variables

ai

Specific surface area of electrode i (i = n, p) (m−1)

c

Electrolyte concentration (mol m−3)

cs,i

Concentration of lithium in the AM particle of electrode i (i = n, p) (mol m−3)

D

Electrolyte diffusion coefficient (m2 s−1)

Ds,i

Lithium-ion diffusion coefficient in the AM particle of electrode i (i = n, p) (m2 s−1)

F

Faraday’s constant (C mol−1)

I

Applied current density (A cm−2)

ji

Wall flux of Li ion on the intercalation particle of electrode i (i = n, p) (mol m−2 s−1)

ki

Reaction-rate constant of electrode i (i = n, p) [mol (mol m−3)−1.5]

li

Thickness of electrode i (i = n, s, p) (m)

n

Negative electrode

p

Positive electrode

r

Radial coordinate (m)

R

Universal gas constant [J (mol K)−1]

Ri

Radius of the AM particle of electrode i (i = n, p) (m)

s

Separator

t+

Li ion transference number in the electrolyte

T

Absolute temperature (K)

Ui

Open-circuit potential of electrode i (i = n, p) (V)

x

Spatial coordinate (m)

Greek letters

εi

Porosity of electrode i (i = n, s, p)

εf,i

Volume fraction of fillers of electrode i (i = n, p)

εp,i

Volume fraction of polymer of electrode i (i = n, p)

κeff,i

Effective ionic conductivity of the electrolyte in region i (i = n, s, p) (S m−1)

σi

Electronic conductivity of the solid phase of electrode i (i = n, p) (S m−1)

σeff,i

Effective electronic conductivity of the solid phase of electrode i (i = n, p) (S m−1)

Φ1

Solid-phase potential (V)

Φ2

Electrolyte-phase potential (V)

Notes

Acknowlegments

This work was supported by the Energy Efficiency & Resources program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2009201010003B-11-3-020 and 20102010100090-11-2-200).

References

  1. 1.
    Huang H, Yin SC, Nazar LF (2001) Electrochem Solid State Lett 4:A170CrossRefGoogle Scholar
  2. 2.
    Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184CrossRefGoogle Scholar
  3. 3.
    Prosini PP, Zane D, Pasquali M (2001) Electrochim Acta 46:3517CrossRefGoogle Scholar
  4. 4.
    Wilcox JD, Doeff MM, Marcinek M, Kostecki R (2007) J Electrochem Soc 154:A389CrossRefGoogle Scholar
  5. 5.
    Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123CrossRefGoogle Scholar
  6. 6.
    Wang D, Li H, Shi S, Huang X, Chen L (2005) Electrochim Acta 50:2955CrossRefGoogle Scholar
  7. 7.
    Shi S, Liu L, Ouyang C, Wang DS, Wang Z, Chen L, Huang X (2003) Phys Rev B 68:195108CrossRefGoogle Scholar
  8. 8.
    Sides CR, Croce F, Young VY, Martion CR, Scrosati B (2005) Electrochem Solid State Lett 8:A484CrossRefGoogle Scholar
  9. 9.
    Kim DH, Kim J (2006) Electrochem Solid State Lett 9:A439CrossRefGoogle Scholar
  10. 10.
    Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Electrochem Solid State Lett 9:A352CrossRefGoogle Scholar
  11. 11.
    Jiao F, Hill AH, Harrison A, Berko A, Chadwick A, Bruce PG (2008) J Am Chem Soc 130:5262CrossRefGoogle Scholar
  12. 12.
    Dominko R, Bele M, Goupil JM, Gaberscek M, Hanzel D, Arcon I, Jamnik J (2007) Chem Mater 19:2960CrossRefGoogle Scholar
  13. 13.
    Chen YH, Wang CW, Zhang X, Sastry AM (2010) J Power Sour 195:2851CrossRefGoogle Scholar
  14. 14.
    Fongy C, Gaillot AC, Jouanneau S, Guyomard D, Lestriez B (2010) J Electrochem Soc 157:A885CrossRefGoogle Scholar
  15. 15.
    Gaberscek M (2009) J Power Sour 189:22CrossRefGoogle Scholar
  16. 16.
    Doyle M, Fuller TF, Newman J (1993) J Electrochem Soc 140:1526CrossRefGoogle Scholar
  17. 17.
    Fuller TF, Doyle M, Newman J (1994) J Electrochem Soc 141:1CrossRefGoogle Scholar
  18. 18.
    Fuller TF, Doyle M, Newman J (1994) J Electrochem Soc 141:982CrossRefGoogle Scholar
  19. 19.
    Doyle M, Newman J (1996) J Electrochem Soc 143:1890CrossRefGoogle Scholar
  20. 20.
    Srinivasan V, Newman J (2004) J Electrochem Soc 151:A1517CrossRefGoogle Scholar
  21. 21.
    Srinivasan V, Newman J (2004) J Electrochem Soc 151:A1530CrossRefGoogle Scholar
  22. 22.
    Singh GK, Ceder G, Bazant MZ (2008) Electrochim Acta 53:7599CrossRefGoogle Scholar
  23. 23.
    Tang M, Carter WC, Chiang YM (2010) Annu Rev Mater Res 40:501CrossRefGoogle Scholar
  24. 24.
    Tang M, Belak JF, Dorr MR (2011) J Phys Chem C 115:4922CrossRefGoogle Scholar
  25. 25.
    Zhang SS, Jow TR (2002) J Power Sour 109:72Google Scholar
  26. 26.
    Hong JK, Lee JH, Oh SM (2002) J Power Sour 111:90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Center for Energy ConvergenceKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.School of Mechanical and Automotive EngineeringDaegu UniversityGyungsanRepublic of Korea

Personalised recommendations