Journal of Applied Electrochemistry

, Volume 42, Issue 9, pp 689–698 | Cite as

Locomotion determined and controlled by electrochemical networks

A robotic application based on electrochemical oscillations
  • Antonis KarantonisEmail author
  • Stavroula Koutalidi
Original Paper


In the present work the modes of four-legged locomotion generated and controlled by a network of coupled electrochemical oscillatory electrode pairs are explored. Each pair, operating under constant potential conditions, consists of an iron disk (anode) and a copper coil (cathode) and all pairs are immersed in a common electrolytic bath (1 M H2SO4 and 0.4 M CuSO4). The electrochemistry of the system is studied and the conditions of oscillatory and synchronous firing are determined. The current response of each pair is determined by the geometry of the network: if the interactions are between the iron anodes then the oscillations are synchronized in-phase whereas if the interactions are between iron anodes and copper cathodes the oscillations are out-of-phase. The electric pulses produced by the network are supplied to a prototype, specially designed mechanical system where possible modes of four-legged locomotion are observed.


Electrochemical oscillations Electrochemical network Synchronization Locomotion 

Supplementary material

MPG (36452 KB)


  1. 1.
    Ijspeert A (2000) Virtual worlds vol 1834, Lecture notes in computer science. Springer, Berlin, pp 225–234Google Scholar
  2. 2.
    Ijspeert A, Crespi A, Cabelguen JM (2005) Neuroinformatics 3:171CrossRefGoogle Scholar
  3. 3.
    Cohen A (1987) J Neurosci Meth 21:113CrossRefGoogle Scholar
  4. 4.
    Kopell N, Ermentrout G (1988) Math Biosci 90:87CrossRefGoogle Scholar
  5. 5.
    Sigvardt K, Williams T (1992) Semin Neurosci 4:37CrossRefGoogle Scholar
  6. 6.
    Taga G (1998) Biol Cybern 78:9CrossRefGoogle Scholar
  7. 7.
    Hoppensteadt F, Izhikevich E (1997) Weakly connected neural networks vol 126, Applied mathematical sciences. Springer-Verlag, New YorkCrossRefGoogle Scholar
  8. 8.
    Dayan P, Abbott L (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press, CambridgeGoogle Scholar
  9. 9.
    Amatore C, Brown A, Thouin L, Warkocz JS (1998) CR Acad Sci Paris IIC 1:509Google Scholar
  10. 10.
    Karantonis A, Miyakita Y, Nakabayashi S (2002) Phys Rev E 65:046213CrossRefGoogle Scholar
  11. 11.
    Miyakita Y, Karantonis A, Nakabayashi S (2002) Chem Phys Lett 362:461CrossRefGoogle Scholar
  12. 12.
    Karantonis A, Koutsaftis D, Kouloumbi N (2009) Electrochim Acta 55:374CrossRefGoogle Scholar
  13. 13.
    Karantonis A, Pagitsas M, Miyakita Y, Nakabayashi S (2004) J Phys Chem B 108:5836CrossRefGoogle Scholar
  14. 14.
    Sadeghi S, Thompson M (2010) Phys Chem Chem Phys 12:6795CrossRefGoogle Scholar
  15. 15.
    Sadeghi S, Thompson M (2010) BioSystems 102:99CrossRefGoogle Scholar
  16. 16.
    Agrawal R, Kapool M (1982) J S Afr Inst Min Metall 82:106Google Scholar
  17. 17.
    Wei W, Lee C, Chen H (1994) Langmuir 10:1980CrossRefGoogle Scholar
  18. 18.
    Alemany C, Diard JP, Gorrec BL, Montella C (1996) Electrochim Acta 41:1483CrossRefGoogle Scholar
  19. 19.
    Pagitsas M, Sazou D, Karantonis A, Georgolios C (1992) J Electroanal Chem 327:93CrossRefGoogle Scholar
  20. 20.
    Sazou D, Karantonis A, Pagitsas M (1993) Int J Bifurc Chaos 3:981CrossRefGoogle Scholar
  21. 21.
    Alkire R, Cangellari A (1989) J Electrochem Soc 136:913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, School of Chemical EngineeringNational Technical University of AthensZografou, AthensGreece

Personalised recommendations