Journal of Applied Electrochemistry

, Volume 42, Issue 4, pp 233–248 | Cite as

Electrochemical investigations on the corrosion behavior and corrosion natural inhibition of API-X100 pipeline steel in acetic acid and chloride-containing CO2-saturated media

  • Faysal Fayez Eliyan
  • Akram Alfantazi
Original Paper


The purpose of this experimental work was to investigate selected electrochemical aspects of the corrosion behavior of API-X100 in CO2-saturated, multivariable-controlled corrosion media. Utilizing potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), the corrosion rates, anodic dissolution, cathodic regimes, and free interfacial interactions were discussed. The tests were performed with respect to the environmental factors of 10, 20, 30, 40, 50, and 60 g L−1 chloride and of 10, 20, 30, 40, 50, and 60 mL L−1 acetic acid at 20 and 90 °C in the absence and presence of 10 vol% crude oil. The corrosion rates exhibited a peak value with respect to the chloride content while they increased continuously with the acetic acid content irrespectively from temperature. The corrosion behavior was nearly independent from chloride in the presence of acetic acid and oil demonstrated an effective inhibition in all conditions. EIS results showed an agreement with the polarization findings and indicated adsorption-controlled mechanisms.


Low alloy steel EIS Polarization Kinetic parameters API-X100 Oil 



The authors would like to thank Qatar National Research Fund (QNRF) for providing the financial support for this work.


  1. 1.
    Kermani M, Morshed A (2003) Corrosion 59:659CrossRefGoogle Scholar
  2. 2.
    Lopez D, Perez T, Simison S (2003) Mater Design 24:561CrossRefGoogle Scholar
  3. 3.
    Murata T, Sato E, Matsuhashi R (1986) Factors controlling corrosion of steels in CO2-saturated environments. CORROSION/1986, Paper no. 7, NACEGoogle Scholar
  4. 4.
    Clover D, Kinsella B, Pejcic B, De Marco R (2005) J Appl Electrochem 35:139CrossRefGoogle Scholar
  5. 5.
    George K, Nesic S (2007) Corrosion 63:178CrossRefGoogle Scholar
  6. 6.
    Gulbrandsen E, Bilkova K (2006) Solution chemistry effects on corrosion of carbon steels in presence of CO2 and acetic acid. CORROSION/2006, Paper no. 364, NACEGoogle Scholar
  7. 7.
    Ajmera P, Robbins W, Richter S, Nesic S (2010) The role of asphaltenes in inhibiting corrosion and altering the wettability of the steel surface. CORROSION/2010, Paper no. 329, NACEGoogle Scholar
  8. 8.
    Morales J, Perdomo J, Ramirez M, Viloria A (2000) Effect of crude oil contaminants on the internal corrosion in gas pipelines. CORROSION/2000, Paper no. 40, NACEGoogle Scholar
  9. 9.
    Lyons W, Plisga G (2005) Standard handbook of petroleum and natural gas engineering. Elsevier Inc, UK, pp 2–107Google Scholar
  10. 10.
    Mullins O (2008) The physics of reservoir fluids: discovery through downhole fluid analysis. Schlumberger, USA, p 144Google Scholar
  11. 11.
    Moiseeva L, Kuksina O (2003) Prot Met 39:490CrossRefGoogle Scholar
  12. 12.
    Hirnyi S (2001) Mater Sci 37:491CrossRefGoogle Scholar
  13. 13.
    Okafor P, Nesic S (2007) Chem Eng Commun 194:141CrossRefGoogle Scholar
  14. 14.
    Castro E, Vilche J (1991) J Appl Electrochem 21:543CrossRefGoogle Scholar
  15. 15.
    Fartash R, NavabZadeh S, Amirkhizi H (2010) Asystematic approach toward selection of cost-effective and corrosion resistant materials and corrosion inhibition and protection methods by using corrosion prediction models. CORROSION/2010, Paper no. 368, NACEGoogle Scholar
  16. 16.
    Fang H, Brown B, Nesic S (2010) High salt concentration effects on CO2 corrosion and H2S corrosion. CORROSION/2010, Paper no. 276, NACEGoogle Scholar
  17. 17.
    Makar G, Tromans D (1996) Corrosion 52:250CrossRefGoogle Scholar
  18. 18.
    Takenouchi S, Kennedy G (1965) Am J Sci 263:445CrossRefGoogle Scholar
  19. 19.
    Singer M, Brown B, Camacho A, Nesic S (2007) Combined effect of CO2, H2S and acetic acid on bottom of the line corrosion. CORROSION/2007, Paper no. 661, NACEGoogle Scholar
  20. 20.
    Cottis R, Turgoose S (1999) Electrochemical impedance and noise. NACE International, USA, p 9Google Scholar
  21. 21.
    Nesic S, Postlethwaite J, Olsen S (1996) Corrosion 52:280CrossRefGoogle Scholar
  22. 22.
    Chen Y, Jepson W (1999) Electrochim Acta 44:4453CrossRefGoogle Scholar
  23. 23.
    Fan X, Liu W, Cai F, Guo H, Wu Y, Du Q, Lu M (2011) Electrochemical characterization of erosion–corrosion of X70 pipeline steel under jet impingement conditions. CORROSION/2011, Paper no. 241, NACEGoogle Scholar
  24. 24.
    Remita E, Tribollet B, Sutter E, Vivier V, Ropital F, Kittel J (2008) Corros Sci 50:1433CrossRefGoogle Scholar
  25. 25.
    Farelas F, Galicia M, Brown B, Nesic S (2010) Corros Sci 52:509CrossRefGoogle Scholar
  26. 26.
    Laethaison N (2011) Carbide formation on carbon steels in CO2 corrosion by use of applied anodic current. Master’s thesis, University of StavangerGoogle Scholar
  27. 27.
    Jorcin J, Orazemb M, Pebere N, Tribollet B (2006) Electrochim Acta 51:1473CrossRefGoogle Scholar
  28. 28.
    López D, Schreiner W, de Sánchez S, Simison S (2003) Appl Surf Sci 207:69CrossRefGoogle Scholar
  29. 29.
    Li P, Tan T, Lee J (1996) Corros Sci 38:1935CrossRefGoogle Scholar
  30. 30.
    Zhu S, Fu A, Miao J, Yin Z, Zhou G, We J (2011) Corros Sci 53:3156CrossRefGoogle Scholar
  31. 31.
    Wang S, George K, Nesic S (2004) High pressure CO2 corrosion electrochemistry and the effect of acetic acid. CORROSION/2004, Paper no. 375, NACEGoogle Scholar
  32. 32.
    Fajardo V, Canto C, Brown B, Young D, Nesic S (2008) The effect of acetic acid on the integrity of protective iron carbonate layers in CO2 corrosion of mild steel. CORROSION/2008, Paper no. 333, NACEGoogle Scholar
  33. 33.
    Eliyan F, Alfantazi A Electrochemical corrosion evaluation of API-X100 pipeline steel in mildly alkaline, low oil bicarbonate emulsions. Corrosion (under review)Google Scholar
  34. 34.
    Gusmano G, Labella P, Montesperelli G, Privitera A, Tassinari S (2006) Corrosion 62:576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.The University of British ColumbiaVancouverCanada

Personalised recommendations