Electrochemical recycling of cobalt from spent cathodes of lithium–ion batteries: its application as coating on SOFC interconnects

  • Eric M. Garcia
  • Hosane A. Tarôco
  • Tulio Matencio
  • Rosana Z. Domingues
  • Jacqueline A. F. dos Santos
  • Marcos B. J. G. de Freitas
Short Communication


In this work the metallic cobalt was electrodeposited on 430 steel in order to obtain a low electrical resistance film made to Co3O4. Pure cobalt was obtained by acidic dissolution of lithium cobalt oxide (LiCoO2) present in exhausted Li-ion battery cathode. The electrodeposition was performed with a 96% efficiency at a potential of 1.50 V versus Ag/AgCl. The electrodeposited cobalt showed the face-centered cubic (23%) and hexagonal centered (77%) phases. After oxidation at 850 °C for 1000 h in air, the cobalt layer was transformed into the Co3O4 phase. On the other hand, a sample without cobalt showed the usual Cr2O3 and FeCr2O4 phases. After 1000 h at 850 °C, in air the area specific resistance of the sample with the cobalt oxide layer was 0.038 Ω cm−2, while it was 1.30 Ω cm−2 for the bare sample.


Li-ion batteries Cobalt Recycling Solid oxide fuel cell Electrodeposition Interconnect 



The authors acknowledge UFMG, CNPq and CEMIG for financial support. A special acknowledgement to Michel Kleitz by revision.


  1. 1.
    Singhal SC, Kendall K (2004) High temperature solid oxide fuel cells: fundamentals designs and applications, 2nd edn. Elsevier Science, Oxford, pp 103–110Google Scholar
  2. 2.
    Lang M, Franco T, Schiller G, Wagner N (2002) J Appl Electrochem 32:871CrossRefGoogle Scholar
  3. 3.
    Piccardo P, Amendola R, Fontana S et al (2009) J Appl Electrochem 39:534CrossRefGoogle Scholar
  4. 4.
    Fergus JW (2005) J Power Sources 397:271Google Scholar
  5. 5.
    Chevalier S, Caboche G, Przybylski K et al (2009) J Appl Electrochem 39:529CrossRefGoogle Scholar
  6. 6.
    Repetto L, Costamagna P (2008) J Appl Electrochem 38:1005CrossRefGoogle Scholar
  7. 7.
    Shaigana N, Qua W, Ivey DG et al (2010) J Power Sources 195:1529CrossRefGoogle Scholar
  8. 8.
    Liu Y, Chen DY (2009) Int J Hydrogen Energy 34:9220CrossRefGoogle Scholar
  9. 9.
    Petric A, Ling H (2007) J Am Ceram Soc 5:1515CrossRefGoogle Scholar
  10. 10.
    Stanislowski M, Froitzheim J, Niewolak L et al (2007) J Power Sources 164:578CrossRefGoogle Scholar
  11. 11.
    Deng X, Wei P, Bateni MR et al (2006) J Power Sources 160:1225CrossRefGoogle Scholar
  12. 12.
    Wu J, Jiang Y, Johnson C, Liu X (2008) J Power Sources 177:376CrossRefGoogle Scholar
  13. 13.
    Lupi C, Pasquali M, Era AD (2005) Waste Manage 25:215CrossRefGoogle Scholar
  14. 14.
    Freitas MBJG, Garcia EM, Celante VG (2009) J Appl Electrochem 39:601CrossRefGoogle Scholar
  15. 15.
    Freitas MBJG, Garcia EM (2007) J Power Sources 171:953CrossRefGoogle Scholar
  16. 16.
    Santos JS, Matos R, Strixino FT et al (2007) Electrochim Acta 53:122CrossRefGoogle Scholar
  17. 17.
    Matsushima T, Strixino FT, Pereira EC (2006) Electrochim Acta 51:1960CrossRefGoogle Scholar
  18. 18.
    Garcia EM, Santos JS, Pereira EC et al (2008) J Power Sources 185:549CrossRefGoogle Scholar
  19. 19.
    Hansson AN, Linderoth S, Mogensen M et al (2007) J Alloys Compd 433:193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eric M. Garcia
    • 1
  • Hosane A. Tarôco
    • 1
  • Tulio Matencio
    • 1
  • Rosana Z. Domingues
    • 1
  • Jacqueline A. F. dos Santos
    • 1
  • Marcos B. J. G. de Freitas
    • 2
  1. 1.Chemistry DepartmentFederal University of Minas GeraisPampulhaBrazil
  2. 2.Chemistry DepartmentFederal University of Espírito SantoGoiabeirasBrazil

Personalised recommendations