Journal of Applied Electrochemistry

, Volume 41, Issue 8, pp 919–923 | Cite as

Using electrophoretic deposition to identify protein charge in biological medium

  • Decheng Meng
  • Lydia Francis
  • Ipsita Roy
  • Aldo R. BoccacciniEmail author
Original Paper


Protein adsorption is the first step involved in establishing a suitable integration between a biomaterial and host tissue. It is therefore of highest interest to know the electric charge of proteins present in the relevant medium to be able to predict the behaviour of cells on given surfaces. In this study, electrophoretic deposition (EPD) was used as a simple method to identify the charge of proteins present in biological medium. In the model experiment carried out here, EPD was conducted using a biological medium containing 10% fetal calf serum (FCS) and the charge of the protein was determined by examining the migration of the protein in the EPD cell under a certain applied voltage. In addition, the suitability of EPD of proteins to deliver tailored surfaces for enhanced bioactivity or for controlled deposition of protein films on metallic surfaces was explored.


Electrophoretic deposition Proteins Coatings 



The authors thank Dr. M. G. Ardakani (Imperial College London) for his support with SEM observations.


  1. 1.
    Langer R, Vacanti JP (1993) Science 260:920CrossRefGoogle Scholar
  2. 2.
    Kaufmann E et al (2000) J Biomed Mater Res 52:825CrossRefGoogle Scholar
  3. 3.
    Nuffer JH, Siegel R (2010) Tissue Eng A 16:423CrossRefGoogle Scholar
  4. 4.
    Krajewski A, Piancastelli A, Malavolti R (1998) Biomaterials 19:637CrossRefGoogle Scholar
  5. 5.
    Opitz HG, Opitz U, Lemke H, Hewlett G, Schreml W, Flad HD (1977) J Exp Med 145:1029CrossRefGoogle Scholar
  6. 6.
    Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Biomaterials 28:4600CrossRefGoogle Scholar
  7. 7.
    El-Ghannam A, Ducheyne P, Shapiro IM (1996) In: Proceedings of the 5th World Biomaterials Congress. Journal Bone Joint Surgery Inc., Toronto, CanadaGoogle Scholar
  8. 8.
    Rouahi M (2006) Colloid Surf B 47:10CrossRefGoogle Scholar
  9. 9.
    Davies JE et al (1986) Biomaterials 7:231CrossRefGoogle Scholar
  10. 10.
    Simchi A, Pishbin F, Boccaccini AR (2009) Mater Lett 63:2253CrossRefGoogle Scholar
  11. 11.
    Poortinga AT, Bos R, Busscher HJ (2000) Biotechnol Bioeng 67:117CrossRefGoogle Scholar
  12. 12.
    Novak S, Maver U, Peternel S, Venturini P, Bele M, Gaberscek M (2009) Colloid Surf A 340:155CrossRefGoogle Scholar
  13. 13.
    Boccaccini AR, Keim S et al (2010) J R Soc Interface 6:S581–S613CrossRefGoogle Scholar
  14. 14.
    Neirinck B, Van Mellaert L, Fransaer J, Van der Biest O, Anne J, Vleugels J (2009) Electrochem Commun 11:1842CrossRefGoogle Scholar
  15. 15.
    Ammam M, Fransaer J (2009) Biosens Bioelectron 25:191–197CrossRefGoogle Scholar
  16. 16.
    Meyer U, Buchten A, Wiesmann HP, Joos U, Jones DB (2005) Eur Cells Mater 9:39Google Scholar
  17. 17.
    Alkan S, Toppare L, Bakir U, Yağci Y (2001) Synth Metals 123:95–99CrossRefGoogle Scholar
  18. 18.
    Ma R, Zhitomirsky I (2011) Surf Eng 27:51–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Decheng Meng
    • 1
  • Lydia Francis
    • 2
  • Ipsita Roy
    • 2
  • Aldo R. Boccaccini
    • 1
    • 3
    Email author
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of Molecular and Applied BiosciencesUniversity of WestminsterLondonUK
  3. 3.Department of Materials Science and EngineeringInstitute of Biomaterials, University of Erlangen-NurembergErlangenGermany

Personalised recommendations