Journal of Applied Electrochemistry

, Volume 41, Issue 10, pp 1215–1221 | Cite as

Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries

  • Jianlu Zhang
  • Liyu Li
  • Zimin Nie
  • Baowei Chen
  • M. Vijayakumar
  • Soowhan Kim
  • Wei Wang
  • Birgit Schwenzer
  • Jun Liu
  • Zhenguo Yang
Original Paper

Abstract

The stability of the electrolytes for all-vanadium redox flow battery was investigated with ex-situ heating/cooling treatment and in situ flow-battery testing methods. The effects of inorganic and organic additives have been studied. The additives containing the ions of potassium, phosphate, and polyphosphate are not suitable stabilizing agents because of their reactions with V(V) ions, forming precipitates of KVSO6 or VOPO4. Of the chemicals studied, polyacrylic acid and its mixture with CH3SO3H are the most promising stabilizing candidates which can stabilize all the four vanadium ions (V2+, V3+, VO2+, and VO2+) in electrolyte solutions up to 1.8 M. However, further effort is needed to obtain a stable electrolyte solution with >1.8 M V5+ at temperatures higher than 40 °C.

Keywords

All vanadium redox flow batteries Electrolyte stability Stabilizing agent Vanadium ions Energy storage 

Notes

Acknowledgments

This work was supported by the Office of Electricity Delivery & Energy Reliability (OE, project manager: Dr. Imre Gyuk), U.S. Department of Energy (DOE) under contract #57558, and by the Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development (LDRD) program.

References

  1. 1.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) J Electrochem Soc 133:1057CrossRefGoogle Scholar
  2. 2.
    Shibata A, Sato K (1999) Power Eng J 13:130CrossRefGoogle Scholar
  3. 3.
    Huang KL, Li XG, Liu SQ, Tan N, Chen LQ (2008) Renew Energy 33:186CrossRefGoogle Scholar
  4. 4.
    Fabjan C, Garche J, Harrer B, Jörissen L, Kolbeck C et al (2001) Electrochim Acta 47:825CrossRefGoogle Scholar
  5. 5.
    Eckroad S (2007) Technical report, EPRI-1014836. Electric Power Research Institute, Palo AltoGoogle Scholar
  6. 6.
    Rahman F, Skyllas-Kazacos M (2009) J Power Sources 189:1212CrossRefGoogle Scholar
  7. 7.
    Skyllas-Kazacos M, Peng C, Cheng M (1999) Electrochem Solid-State Lett 2:121CrossRefGoogle Scholar
  8. 8.
    Skyllas-Kazacos M, Menictas C, Kazacos M (1996) J Electrochem Soc 143:L86CrossRefGoogle Scholar
  9. 9.
    Vijayakumar M, Li L, Graff G, Liu J, Zhang H, Yang Z, Hu J (2010) J Power Sources. doi:10.1016/j.jpowsour.2010.11.126
  10. 10.
    Skyllas-Kazacos M, Kazacos M (2003) US Patent, 6,562,514Google Scholar
  11. 11.
    Kazacos M, Cheng M, Skyllas-Kazacos M (1990) J Appl Electrochem 20:463CrossRefGoogle Scholar
  12. 12.
    Kazacos M, Skyllas-Kazacos M (2003) US Patent, 2,003,143,456Google Scholar
  13. 13.
    Rahman F, Skyllas-Kazacos M (1998) J Power Sources 72:105CrossRefGoogle Scholar
  14. 14.
    Kim S, Yan J, Schwenzer B, Zhang J, Li L, Liu J, Yang Z, Hickner MA (2010) Electrochem Commun 12:1650CrossRefGoogle Scholar
  15. 15.
    Kazacos M, Skyllas-Kazacos M (1996) WO Patent, 9,635,239Google Scholar
  16. 16.
    Kazacos M, Skyllas-Kazacos M (1995) WO Patent, 9,512,219Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jianlu Zhang
    • 1
  • Liyu Li
    • 1
  • Zimin Nie
    • 1
  • Baowei Chen
    • 1
  • M. Vijayakumar
    • 1
  • Soowhan Kim
    • 1
  • Wei Wang
    • 1
  • Birgit Schwenzer
    • 1
  • Jun Liu
    • 1
  • Zhenguo Yang
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations