Journal of Applied Electrochemistry

, Volume 41, Issue 9, pp 1021–1032 | Cite as

Nonlinear frequency response analysis for the diagnosis of carbon monoxide poisoning in PEM fuel cell anodes

  • Thomas Kadyk
  • Richard Hanke-Rauschenbach
  • Kai Sundmacher
Original Paper


Anodic CO poisoning of a PEMFC was analysed by nonlinear frequency response analysis (NFRA) in a differential H2/H2 cell. This special experimental setup excluded potential masking effects, emphasised the main mechanism of CO poisoning and made a simplified modelling approach possible. The main features of CO poisoning were investigated by means of steady state polarisation, EIS and NFRA. The main characteristics of CO poisoning in the NFRA spectra can be used as a “fingerprint” for diagnostic purposes.


Polymer electrolyte membrane fuel cell Nonlinear frequency response analysis Higher order frequency response function Carbon monoxide 

List of symbols

\( a_{{{\text{H}}_{{\text{2}}} {\text{O}}}}\)

Activity of water, [0 … 1]


Amplitude, A m−2


Tafel slope of CO or hydrogen electrooxidation, V


Ratio of desorption to adsorption rate constant for CO or hydrogen, [0 … 1]


Anodic or cathodic double layer capacity, F \({\text m}^{-2}_{\text {act}}\)


Thickness of the membrane, m


Faraday constant, 96485.3 A s mol−1


Rate constant of CO or hydrogen electrooxidation, mol \({\text m}^{-2}_{\text {act}}\) s−1


Rate constant of CO or hydrogen adsorption, mol \({\text m}^{-2}_{\text {act}}\) s−1


Current density, A m−2


Number of affected sites for Temkin adsorption


Pressure at the anode, Pa


Rates of CO or hydrogen adsorption, desorption or oxidation, mol \({\text m}^{-2}_{\text {act}}\) s−1


Membrane resistance, \(\Upomega\, \hbox{m}^{-2}_{geom}\)


Cell voltage, V


Mole fraction of CO or hydrogen, [0… 1]


\( \delta(\Updelta G_{\text{CO}}) \)

Variation of adsorption free energy between \(\Uptheta_{\text{CO}}=0\) and \(\Uptheta_{\text{CO}}=1, \hbox{J mol}^{-1}\)

\( \delta(\Updelta E_H) \)

Change in activation energy for hydrogen dissociative adsorption near CO occupied site, J mol−1

\( \epsilon \)

Roughness factor, \({\text m}^{2}_{\text {act}}\,{\text m}^{-2}_{\text {geom}}\)


Anode or cathode overpotential, V

\( \Uptheta_{\text{CO/H}} \)

Coverage of catalyst with CO or hydrogen, [0 … 1]

\( \Uptheta_{\text{Pt}} \)

Free active Pt catalyst sites, [0 … 1]


Conductivity of the membrane, S m−1


Molar area density of active sites, mol \({\text m}^{-2}_{\text {act}}\)



Reference conditions




Active area




Carbon monoxide


Electrooxidation of hydrogen


Electrooxidation of carbon monoxide


Adsorption of hydrogen


Adsorption of carbon monoxide


Geometric area

















  1. 1.
    Bessarab Y, Merfert I, Fischer W, Lindemann A (2008) Different control methods of bidirectional DC–DC converters for fuel cell power systems. In: PCIM Europe 2008. International exhibition and conference for power electronics intelligent motion power quality. Mesago PCIM GmbH, Stuttgart, Germany, p 5Google Scholar
  2. 2.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Barsoukov E, MacDonald JR (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. John Wiley and Sons, New YorkCrossRefGoogle Scholar
  4. 4.
    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. The electrochemical society series, vol 48. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  5. 5.
    Yuan XZ, Song C, Wang H, Zhang J (2009) Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. Springer, New YorkGoogle Scholar
  6. 6.
    Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamama B (2006) Model based PEM fuel cell state-of-health monitoring via AC impedance measurements. J Power Sources 159(2):905–913CrossRefGoogle Scholar
  7. 7.
    Le Canut JM, Abouatallah RM, Harrington DA (2006) Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on PEMFC stacks by electrochemical impedance spectroscopy. J Electrochem Soc 153(5):A857–A864CrossRefGoogle Scholar
  8. 8.
    Merida W, Harrington DA, Le Canut JM, McLean G (2006) Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy. J Power Sources 161(1):264–274CrossRefGoogle Scholar
  9. 9.
    Kadyk T, Hanke-Rauschenbach R, Sundmacher K (2009) Nonlinear frequency response analysis of PEM fuel cells for diagnosis of dehydration, flooding and CO-poisoning. J Electroanal Chem 630:19–27CrossRefGoogle Scholar
  10. 10.
    Engblom SO, Myland JC, Oldham KB (2000) Must AC voltammetry employ small signals? J Electroanal Chem 480(1–2):120–132CrossRefGoogle Scholar
  11. 11.
    Gavaghan DJ, Bond AM (2000) A complete numerical simulation of the techniques of alternating current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast fourier transform methods. J Electroanal Chem 480(1–2):133–149CrossRefGoogle Scholar
  12. 12.
    Smith DE (1966) Electroanalytical chemistry: a series of advances. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Jankowski J (2002) Electrochemical methods for corrosion rate determination under cathodic polarisation conditions—a review part 2: AC methods. Corros Rev 20(3):179–200CrossRefGoogle Scholar
  14. 14.
    Darowicki K, Majewska J (1999) Harmonic analysis of electrochemical and corrosion systems—a review. Corros Rev 17(5–6):383–399CrossRefGoogle Scholar
  15. 15.
    Groysman A (2009) Corrosion monitoring. Corros Rev 27(4–5):205–343CrossRefGoogle Scholar
  16. 16.
    Mao Q, Krewer U, Hanke-Rauschenbach R (2010) Total harmonic distortion analysis for direct methanol fuel cell anode. Electrochem Commun 12:1517–1519CrossRefGoogle Scholar
  17. 17.
    Mao Q, Krewer U, Hanke-Rauschenbach R (2011) Comparative studies on linear and nonlinear frequency response for direct methanol fuel cell anode. Submitted to J Electrochem SocGoogle Scholar
  18. 18.
    Bensmann B, Petkovska M, Vidaković-Koch T, Hanke-Rauschenbach R, Sundmacher K (2010) Nonlinear frequency response of electrochemical methanol oxidation kinetics: a theoretical analysis. J Electrochem Soc 157(9):B1279–B1289CrossRefGoogle Scholar
  19. 19.
    Darowicki K (1994) Fundamental-harmonic impedance of 1st-order electrode-reactions. Electrochim Acta 39(18):2757–2762CrossRefGoogle Scholar
  20. 20.
    Darowicki K (1995) Corrosion rate measurements by nonlinear electrochemical impedance spectroscopy. Corros Sci 37(6):913–925CrossRefGoogle Scholar
  21. 21.
    Darowicki K (1995) The amplitude analysis of impedance spectra. Electrochim Acta 40(4):439–445CrossRefGoogle Scholar
  22. 22.
    Wilson JR, Schwartz DT, Adler SB (2006) Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials. Electrochim Acta 51(8–9):1389–1402CrossRefGoogle Scholar
  23. 23.
    Wilson JR, Sase M, Kawada T, Adler SB (2007) Measurement of oxygen exchange kinetics on thin-film La0.6Sr0.4CoO3-delta using nonlinear electrochemical impedance spectroscopy. Electrochem Solid State Lett 10(5):B81–B86CrossRefGoogle Scholar
  24. 24.
    Weiner DD, Spina JF (1980) Sinusoidal analysis and modeling of weakly nonlinear circuits. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  25. 25.
    Petkovska M (2006) Nonlinear frequency response method for investigation of equilibria and kinetics of adsorption systems. In: Spasic AM, Hsu J-P (eds) Finely dispersed particles—micro-, nano-, and atto-engineering, chap. 12. CRC Press, Boca Raton, pp 283–328Google Scholar
  26. 26.
    Petkovska M, Do DD (2000) Use of higher-order frequency response functions for identification of nonlinear adsorption kinetics: single mechanisms under isothermal conditions. Nonlinear Dyn 21(4):353–376CrossRefGoogle Scholar
  27. 27.
    Wagner N, Schnurnberger W, Müller B, Lang M (1998) Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells. Electrochim Acta 43(24):3785–3793CrossRefGoogle Scholar
  28. 28.
    Ciureanu M, Wang H (1999) Electrochemical impedance study of electrode-membrane assemblies in PEM fuel cells I. Electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes. J Electrochem Soc 146(11):4031–4040CrossRefGoogle Scholar
  29. 29.
    Himanen O, Hottinen T, Mikkola M, Saarinen V (2006) Characterization of membrane electrode assembly with hydrogen–hydrogen cell and AC-impedance spectroscopy part I: Experimental. Electrochim Acta 52(1):206–214CrossRefGoogle Scholar
  30. 30.
    Schneider IA, von Dahlen S, Wokaun A, Scherer GG (2010) A segmented microstructured flow field approach for submillimeter resolved local current measurement in channel and land areas of a PEFC. J Electrochem Soc 157(3):B338–B341CrossRefGoogle Scholar
  31. 31.
    Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S (2001) Model for polymer electrolyte fuel cell operation on reformate feed-effects of CO, H2 dilution, and high fuel utilization. J Electrochem Soc 148(1):A11–A23CrossRefGoogle Scholar
  32. 32.
    Springer TE, Zawodzinski TA, Gottesfeld S (1997) Modelling of polymer electrolyte fuel cell performance with reformate feed streams: effects of low levels of CO in hydrogen. In: McBreen J, Muckerjee S, Srinivasan S (eds) Electrode materials and processes for energy conversion and storage. The electrochemical society proceedings, vol 97. The Electrochemical Society, Pennington, pp 15–24Google Scholar
  33. 33.
    Lee SJ, Mukerjee S, Ticianelli EA, McBreen J (1999) Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim Acta 44(19):3283–3293CrossRefGoogle Scholar
  34. 34.
    Camara GA, Ticianelli EA, Mukerjee S, Lee SJ, McBreen J (2002) The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc 149(6):A748–A753CrossRefGoogle Scholar
  35. 35.
    Lopes PP, Ticianelli EA (2010) The CO tolerance pathways on the Pt-Ru electrocatalytic system. J Electroanal Chem 644(2):110–116CrossRefGoogle Scholar
  36. 36.
    Kim JD, Park YI, Kobayashi K, Nagai M, Kunimatsu M (2001) Characterization of CO tolerance of PEMFC by AC impedance spectroscopy. Solid State Ion 140(3-4):313–325CrossRefGoogle Scholar
  37. 37.
    Kim JD, Park YI, Kobayashi K, Nagai M (2001) Effect of CO gas and anode-metal loading on H2 oxidation in proton exchange membrane fuel cell. J Power Sources 103(1):127–133CrossRefGoogle Scholar
  38. 38.
    Wagner N, Schulze M (2003) Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt-Ru anodes in a membrane fuel cell (PEFC). Electrochim Acta 48(25–26):3899–3907CrossRefGoogle Scholar
  39. 39.
    Wagner N, Gülzow E (2004) Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell. J Power Sources 127(1–2):341–347CrossRefGoogle Scholar
  40. 40.
    Ciureanu M, Wang H (2000) Electrochemical impedance study of anode CO-poisoning in PEM fuel cells. J New Mater Electrochem Syst 3(2):107–119Google Scholar
  41. 41.
    Ciureanu M, Wang H, Qi ZG (1999) Electrochemical impedance study of membrane-electrode assemblies in PEM fuel cells: II. Electrooxidation of H2 and H2/CO mixtures on Pt/Ru-based gas-diffusion electrodes. J Phys Chem B 103(44):9645–9657CrossRefGoogle Scholar
  42. 42.
    Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and Zirconium Phosphate/Nafion composite membranes. J Membr Sci 237(1–2):145–161CrossRefGoogle Scholar
  43. 43.
    Baschuk JJ, Li XG (2003) Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode. Int J Energy Res 27(12):1095–1116CrossRefGoogle Scholar
  44. 44.
    Adamson AW (1967) Physical chemistry of surfaces. Interscience, New YorkGoogle Scholar
  45. 45.
    Dhar HP, Christner LG, Kush AK (1987) Nature of CO adsorption during H2 oxidation in relation to modelling for CO poisoning of a fuel-cell anode. J Electrochem Soc 134(12):3021–3026CrossRefGoogle Scholar
  46. 46.
    Shah AA, Sui PC, Kim GS, Ye S (2007) A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst. J Power Sources 166(1):1–21CrossRefGoogle Scholar
  47. 47.
    Gottesfeld S, Pafford J (1988) A new approach to the problem of carbon-monoxide poisoning in fuel-cells operating at low-temperatures. J Electrochem Soc 135(10):2651–2652CrossRefGoogle Scholar
  48. 48.
    Zhang JX, Thampan T, Datta R (2002) Influence of anode flow rate and cathode oxygen pressure on CO poisoning of proton exchange membrane fuel cells. J Electrochem Soc 149(6):A765–A772CrossRefGoogle Scholar
  49. 49.
    Zhang JX, Datta R (2005) Electrochemical preferential oxidation of CO in reformate. J Electrochem Soc 152(6):A1180–A1187CrossRefGoogle Scholar
  50. 50.
    Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52(2):491–498CrossRefGoogle Scholar
  51. 51.
    Zhang JX, Datta R (2002) Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst. J Electrochem Soc 149(11):A1423–A1431CrossRefGoogle Scholar
  52. 52.
    Kadyk T, Kirsch S, Hanke-Rauschenbach R, Sundmacher K (2011) Autonomous potential oscillations at the Pt anode of a PEM fuel cell under CO poisoning. Submitted to Electrochim ActaGoogle Scholar
  53. 53.
    Heyrovský J (1927) A theory of overpotential. Recl Trav Chim Pays-Bas 46:582–585CrossRefGoogle Scholar
  54. 54.
    Wang JX, Springer TE, Adzic RR (2006) Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes. J Electrochem Soc 153:A1732–A1740CrossRefGoogle Scholar
  55. 55.
    Elezović NR, Gajic-Krstajic L, Radmilovic V, Vracar L, Krstajic NV (2009) Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction. Electrochim Acta 54(4):1375–1382CrossRefGoogle Scholar
  56. 56.
    Vilekar SA, Fishtik I, Datta R (2010) Kinetics of the hydrogen electrode reaction. J Electrochem Soc 157(7):B1040–B1050CrossRefGoogle Scholar
  57. 57.
    Newman JS (1991) Electrochemical systems, chap 5, 2nd edn. Prentice-Hall, New Jersey, pp 116–133Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Kadyk
    • 1
    • 2
  • Richard Hanke-Rauschenbach
    • 1
  • Kai Sundmacher
    • 1
    • 2
  1. 1.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  2. 2.Otto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations