Journal of Applied Electrochemistry

, Volume 41, Issue 8, pp 885–890 | Cite as

Siloxane-based thin films for corrosion protection of stainless steel in chloride media

  • Sérgio Meth
  • Natali Savchenko
  • Federico A. Viva
  • David Starosvetsky
  • Alec Groysman
  • Chaim N. Sukenik
Original Paper

Abstract

The corrosion protection of stainless steel (SS 316L) provided by layers of SiO2 and by siloxane-anchored self-assembled monolayer (SAMs) was assessed by cyclic voltammetry (CV) and by potentiostatic current transient in sodium chloride media. The SAMs were composed of octadecyltrimethoxysilane anchored onto a thin (1–2 nm) layer of SiO2. The initial SiO2 layer was obtained by treatment with tetraethoxyorthosilicate. Successive layers were added by applying the alkylsiloxane and then oxidatively removed by treatment using a UV-ozone cleaner. Though SAMs have been used as corrosion barriers in other contexts, it is shown that successive cycles of SAM deposition and ablation provide an extended SiO2 thin-covering layer that protects stainless steel against pitting and general corrosion.

Keywords

Corrosion barrier coatings 316L stainless steel Self assembled monolayer Pitting corrosion Potentiostatic current transient 

Notes

Acknowledgment

This work was supported by a Tashtiyot Grant from the Israel Ministry of Science.

References

  1. 1.
    Dillon CP (1995) Corrosion resistance of stainless steel. Marcel Dekker, Inc., New YorkGoogle Scholar
  2. 2.
    Groysman A (2010) Corrosion for everybody. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Bard AJ, Parsons R, Jordan J (eds) (1985) Standard potentials in aqueous solutions, International Union of Pure and Applied Chemistry (IUPAC). Marcel Dekker, Inc, New York/BaselGoogle Scholar
  4. 4.
    Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, OxfordGoogle Scholar
  5. 5.
    Davis JR (ed) (1994) ASM Specialty Handbook: Stainless Steel. ASM International, Materials ParkGoogle Scholar
  6. 6.
    Revie RW (ed) (2000) Uhlig’s corrosion Handbook. Wiley, NYGoogle Scholar
  7. 7.
    Brenda J, Little JSL (2007) Microbiologically influenced corrosion. Wiley, New YorkGoogle Scholar
  8. 8.
    Sedriks AJ (1996) Corrosion of stainless steel. Wiley-Interscience Publication, New York, USAGoogle Scholar
  9. 9.
    Aramaki K (2007) Corros Sci 49:1963–1980CrossRefGoogle Scholar
  10. 10.
    Fadeev AY, Kazakevich YV (2002) Langmuir 18:2665–2672CrossRefGoogle Scholar
  11. 11.
    Robertson JWF, Tiani DJ et al (2007) Langmuir 23:4651–4661CrossRefGoogle Scholar
  12. 12.
    Ulman A (1991) An Introduction to Ultrathin Organic Films - From Langmuir-Blodgett to Self-Assembly. Academic Press, San DiegoGoogle Scholar
  13. 13.
    Wang XJ, Hu WC et al (2003) Langmuir 19:9748–9758CrossRefGoogle Scholar
  14. 14.
    Sagiv J (1980) J Am Chem Soc 102:92–98CrossRefGoogle Scholar
  15. 15.
    Blodgett KB (1935) J Am Chem Soc 57:1007–1022CrossRefGoogle Scholar
  16. 16.
    Wu F, Hu Z et al (2008) Electrochim Acta 53:8238–8244CrossRefGoogle Scholar
  17. 17.
    Ruckenstein E, Li ZF (2005) Adv Colloid Interfac 113:43–63CrossRefGoogle Scholar
  18. 18.
    Rohwerder M, Grundmeier G et al (2002) Corros Technol 17:479–527CrossRefGoogle Scholar
  19. 19.
    Shimura T, Aramaki K (2008) Corros Sci 50:596–604CrossRefGoogle Scholar
  20. 20.
    Vaidya RU, Brozik SM et al (1999) Metall Trans A 30A:2129–2134CrossRefGoogle Scholar
  21. 21.
    Wang DH, Ni YH et al (2005) Thin Solid Films 471:177–185CrossRefGoogle Scholar
  22. 22.
    Hintze PE, Calle LM (2006) Electrochim Acta 51:1761–1766CrossRefGoogle Scholar
  23. 23.
    Ishibashi M, Itoh M et al (1996) Electrochim Acta 41:241–248CrossRefGoogle Scholar
  24. 24.
    Itoh M, Nishihara H et al (1995) J Electrochem Soc 142:3696–3704CrossRefGoogle Scholar
  25. 25.
    Petrovic Z, Metikos-Hukovic M et al (2008) Prog Org Coat 61:1–6CrossRefGoogle Scholar
  26. 26.
    Guo WJ, Chen SH et al (2006) Electrochim Acta 52:108–113CrossRefGoogle Scholar
  27. 27.
    Taneichi D, Haneda R et al (2001) Corros Sci 43:1589–1600CrossRefGoogle Scholar
  28. 28.
    Lin H, Kozuka H et al (1998) Thin Solid Films 315:111–117CrossRefGoogle Scholar
  29. 29.
    Meth S, Savchenko N et al (2010) Corros Sci 52:125–129CrossRefGoogle Scholar
  30. 30.
    Meth S, Sukenik CN (2003) Thin Solid Films 425:49–58CrossRefGoogle Scholar
  31. 31.
    Atik M, De Lima Neto P et al (1995) J Appl Electrochem 25:142–148CrossRefGoogle Scholar
  32. 32.
    Fuentes-Gallego JJ, Blanco E et al (1997) Thin Solid Films 301:12–16CrossRefGoogle Scholar
  33. 33.
    Ballarre J, Jimenez-Pique E et al (2009) Surf Coat Tech 203:3325–3331CrossRefGoogle Scholar
  34. 34.
    Gallardo J, Durán A et al (2004) Corros Sci 46:795–806CrossRefGoogle Scholar
  35. 35.
    López DA, Rosero-Navarro NC et al (2008) Surf Coat Tech 202:2194–2201CrossRefGoogle Scholar
  36. 36.
    Shin DY, Kim KN et al (2006) Mater Sci Forum 510–511:442–445CrossRefGoogle Scholar
  37. 37.
    Trasatti SP, Camona E et al (1998) J Appl Electrochem 28:1333–1341CrossRefGoogle Scholar
  38. 38.
    Takemori M (2009) Ceram Int 35:1731–1746CrossRefGoogle Scholar
  39. 39.
    Vives S, Meunier C (2008) Surf Coat Tech 202:2374–2378CrossRefGoogle Scholar
  40. 40.
    Brunner H, Vallant T et al (1996) Langmuir 12:4614–4617CrossRefGoogle Scholar
  41. 41.
    Vallant T, Brunner H et al (2000) J Phys Chem B 104:5309–5317CrossRefGoogle Scholar
  42. 42.
    ASTM (2003) Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys. In: ASTM Standard G 61 Committee G01.11 on Electrochemical measurements in corrosion testing, Philadelphia, 2003Google Scholar
  43. 43.
    ASTM (2004) Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements. In: ASTM G5 Committee G01.11 on Electrochemical measurements in corrosion testing, Philadelphia, 2004Google Scholar
  44. 44.
    Baboian R, Haynes GS (1981) Cyclic polarization measurements-experimental procedure and evaluation of test data, electrochemical corrosion testing, ASTM STP 727, USAGoogle Scholar
  45. 45.
    Burstein GT, Pistorius PC et al (1993) Corros Sci 35:57–62CrossRefGoogle Scholar
  46. 46.
    Ruan C-M, Bayer T et al (2002) Thin Solid Films 419:95–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sérgio Meth
    • 1
    • 3
  • Natali Savchenko
    • 2
  • Federico A. Viva
    • 3
  • David Starosvetsky
    • 4
  • Alec Groysman
    • 2
  • Chaim N. Sukenik
    • 1
  1. 1.Department of ChemistryBar Ilan UniversityRamat GanIsrael
  2. 2.Oil Refineries LtdR&D LaboratoryHaifaIsrael
  3. 3.Department of Chemistry, Loker Hydrocarbon Research InstituteUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.TechnionHaifaIsrael

Personalised recommendations