Journal of Applied Electrochemistry

, Volume 41, Issue 5, pp 561–576 | Cite as

Electrochemical investigation of the roles of oxyanions in chemical–mechanical planarization of tantalum and tantalum nitride

  • C. M. Sulyma
  • C. M. Pettit
  • C. V. V. S. Surisetty
  • S. V. Babu
  • D. Roy
Original Paper

Abstract

Nitrate, sulfate, and phosphate oxyanions are shown to serve as effective surface-modifying agents for low-pressure chemical–mechanical planarization (CMP) of Ta and TaN barrier layers of interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated using cyclic voltammetry, open circuit potential and polarization resistance measurements, and impedance spectroscopy. The results suggest that forming structurally weak layers of surface oxides is crucial to chemically controlling the CMP of Ta/TaN at low polish-pressures. It is shown that in oxyanion-based slurries, this can be accomplished by modifying the sample surfaces with anion-incorporated oxide films of Ta or TaN, which, in turn, can readily be removed with moderate abrasion. Electrochemical results elaborate the reaction mechanisms that lead to anion-modified oxides, such as Ta2O5(1−x)(NO3)10x, Ta2O5(1−x)(SO4)5x, and Ta2O5(1−x)(PO4)10x/3 on both Ta and TaN surfaces in pH-controlled solutions of KNO3, K2SO4, and KH2PO4 solutions, respectively.

Keywords

CMP Tantalum Tantalum nitride Impedance spectroscopy Voltammetry 

Notes

Acknowledgments

This study was funded in part by the Semiconductor Research Corporation through IBM and by Clarkson University.

References

  1. 1.
    Krishnan M, Nalaskowski JW, Cook LM (2010) Chem Rev 10:178CrossRefGoogle Scholar
  2. 2.
    The International Technology Roadmap for Semiconductors: http://www.itrs.net/Links/2009ITRS/Home2009.htm
  3. 3.
    Chang TC, Mor YS, Liuc PT, Tsabi TM, Chenb CW, Meid YJ, Sze SM (2001) Thin Solid Films 398:523CrossRefGoogle Scholar
  4. 4.
    Surisetty CVVS (2010) PhD Thesis, Clarkson UniversityGoogle Scholar
  5. 5.
    Surisetty CVVS, Peethala BC, Roy D, Babu SV (2010) Electrochem Solid-State Lett 13:H244CrossRefGoogle Scholar
  6. 6.
    Stansbury EE, Buchanan RA (2000) Fundamentals of electrochemical corrosion. ASM International, Materials ParkGoogle Scholar
  7. 7.
    Fontana MG (1986) Corrosion engineering. McGraw Hill, New YorkGoogle Scholar
  8. 8.
    Sulyma CM, Roy D (2010) Appl Surf Sci 256:2583CrossRefGoogle Scholar
  9. 9.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications. Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Zheng JP, Klug BK, Roy D (2008) J Electrochem Soc 155:H341CrossRefGoogle Scholar
  11. 11.
    Garland JE, Pettit CM, Roy D (2004) Electrochim Acta 49:2623CrossRefGoogle Scholar
  12. 12.
    Sulyma CM (2010) PhD Thesis, Clarkson UniversityGoogle Scholar
  13. 13.
    Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1998) Corros Sci 40:963CrossRefGoogle Scholar
  14. 14.
    Wood GC, Skeldon P, Thompson GE, Shimizu K (1996) J Electrochem Soc 143:74CrossRefGoogle Scholar
  15. 15.
    Lu Q, Skeldon P, Thompson GE, Masheder D, Habazaki H, Shimizu K (2004) Corros Sci 46:2817CrossRefGoogle Scholar
  16. 16.
    Kerrec O, Devilliers D, Groult H, Chemla M (1995) Electrochim Acta 40:719CrossRefGoogle Scholar
  17. 17.
    Assiongbon KA, Emery SB, Pettit CM, Babu SV, Roy D (2004) Mater Chem Phys 86:347CrossRefGoogle Scholar
  18. 18.
    Young L (1961) Anodic oxide films. Academic, New YorkGoogle Scholar
  19. 19.
    Bartels C, Schultze JW, Stimming U, Habib MA (1982) Electrochim Acta 27:129CrossRefGoogle Scholar
  20. 20.
    Hug SJ (1997) J Colloid Interface Sci 188:415CrossRefGoogle Scholar
  21. 21.
    Weber M, Nart FC, de Moraes IR (1996) J Phys Chem 100:19933–19938CrossRefGoogle Scholar
  22. 22.
    Goldberg S, Sposito G (1985) Commun Soil Sci Plant Anal 16:801CrossRefGoogle Scholar
  23. 23.
    Milazzo G, Caroli S (1978) Tables of standard electrode potentials. Wiley, New YorkGoogle Scholar
  24. 24.
    Goonetilleke PC, Roy D (2005) Mater Chem Phys 94:388CrossRefGoogle Scholar
  25. 25.
    Pagitsas M, Diamantopoulou A, Sazou D (2001) Electrochem Commun 3:330CrossRefGoogle Scholar
  26. 26.
    Sulyma CM, Roy D (2010) Corros Sci 52:3086CrossRefGoogle Scholar
  27. 27.
    Pell WG, Zolfaghari A, Conway BE (2002) J Electroanal Chem 532:13CrossRefGoogle Scholar
  28. 28.
    Majima M, Awakura Y, Yazaki T, Chikamori Y (1980) Metall Trans B 11:209CrossRefGoogle Scholar
  29. 29.
    Martyak NM, Ricou P (2004) Mater Chem Phys 84:87CrossRefGoogle Scholar
  30. 30.
    Wang YS, Lee WH, Wang YL, Hung CC, Chang SC (2008) J Phys Chem Solids 69:601CrossRefGoogle Scholar
  31. 31.
    Cuong ND, Kim DJ, Kang BD, Kim CS, Yu KM, Yoon SG (2006) J Electrochem Soc 153:G164CrossRefGoogle Scholar
  32. 32.
    Min KH, Chun KC, Kim KB (1996) J Vac Sci Tech B 14:3263CrossRefGoogle Scholar
  33. 33.
    Ritala M, Kalsi P, Riihelä D, Kukli K, Leskelä M, Jokinen J (1999) Chem Mater 11:1712CrossRefGoogle Scholar
  34. 34.
    Wang Z, Yaegashi O, Sakaue H, Takahagi T, Shingubara S (2003) J Appl Phys 94:4697CrossRefGoogle Scholar
  35. 35.
    Liao CN, Liou KM (2005) J Vac Sci Tech A23:359Google Scholar
  36. 36.
    Chung HC, Liu CP (2006) Surf Coat Tech 200:3122CrossRefGoogle Scholar
  37. 37.
    Kuo YL, Huang JJ, Lin ST, Lee C, Lee WH (2003) Mater Chem Phys 80:690CrossRefGoogle Scholar
  38. 38.
    Arranz A, Palacio C (1994) Vacuum 45:1091CrossRefGoogle Scholar
  39. 39.
    Ibidunni AO, MaSaitis RL, Opila RL, Davenport AJ, Isaacs HS, Taylor JA (1993) Surf Interface Anal 20:559CrossRefGoogle Scholar
  40. 40.
    Janjam SVSB, Peethala BC, Roy D, Babu SV (2010) Electrochem Solid-State Lett 13:H1CrossRefGoogle Scholar
  41. 41.
    Walters MJ, Pettit CM, Roy D (2001) Phys Chem Chem Phys 3:570CrossRefGoogle Scholar
  42. 42.
    Goonetilleke PC, Roy D (2008) Appl Surf Sci 254:2696CrossRefGoogle Scholar
  43. 43.
    McCafferty E, Wightman JP (1977) J Colloid Interface Sci 194:344CrossRefGoogle Scholar
  44. 44.
    Kosmulski M (2004) J Colloid Interface Sci 275:214CrossRefGoogle Scholar
  45. 45.
    Kosmulski M (1997) Langmuir 13:6315CrossRefGoogle Scholar
  46. 46.
    Vermilyea A (1965) J Electrochem Soc 112:1232CrossRefGoogle Scholar
  47. 47.
    Mikolajick T, Kühnhold R, Ryssel H (1997) Sens Actuators B 44:262CrossRefGoogle Scholar
  48. 48.
    Ammar IA, Ismail IK (1972) Mater Corrs 23:168CrossRefGoogle Scholar
  49. 49.
    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New YorkCrossRefGoogle Scholar
  50. 50.
    Janjam SSB, Peethala BC, Zheng JP, Babu SV, Roy D (2010) Mater Chem Phys 123:521CrossRefGoogle Scholar
  51. 51.
    Hiemstra T, Van Riemsdijk WH (1999) J Colloid Interface Sci 210:182CrossRefGoogle Scholar
  52. 52.
    Melendres CA, Hahn F, Bowmaker GA (2000) Electrochim Acta 46:9CrossRefGoogle Scholar
  53. 53.
    Sung YE, Bard, AJ (1998) J Phys Chem B 102:9806Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. M. Sulyma
    • 1
  • C. M. Pettit
    • 2
  • C. V. V. S. Surisetty
    • 3
  • S. V. Babu
    • 3
  • D. Roy
    • 1
  1. 1.Department of PhysicsClarkson UniversityPotsdamUSA
  2. 2.Department of PhysicsEmporia State UniversityEmporiaUSA
  3. 3.Center for Advanced Materials ProcessingClarkson UniversityPotsdamUSA

Personalised recommendations