Advertisement

Journal of Applied Electrochemistry

, Volume 41, Issue 3, pp 257–270 | Cite as

Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals

  • U. S. MohantyEmail author
Review Article

Abstract

The synthesis of various nanoscale materials, such as nanoparticles, nanowires of Au, Pt, Ni Co, Fe, Ag etc., by electrodeposition techniques have been demonstrated in this article. Both potentiostatic and galvanostatic methods were employed to carry out the electrodeposition process under different potential ranges, time durations, and current densities. The electrochemical behavior of the deposited nanoparticles on various substrates was investigated by cyclic voltammetric and chronoamperometric techniques. The synthesis of mono-dispersed gold (Au) nanoparticles on indium tin oxide (ITO) coated glass, preparation of Au nanorods on nanoporous anodic alumina oxide (AAO), formation of Au nanoclusters on polypyrrole-modified glassy carbon electrode and one-step electrodeposition of nickel nanoparticle chains embedded in TiO2 etc. have been highlighted in this article. The potential applications of synthesized nanoparticles such as the role of maghemite (Fe2O3) in arsenic remediation, higher electrocatalytic activity of Ag nanoclusters for the reduction of benzyl chloride, and the role of C60 nanoparticle-doped carbon film in fabrication processes are also presented in this article.

Keywords

Electrodeposition Gold Nanoparticles Nanoclusters Nanowires Nickel Platinum Silver Synthesis 

Notes

Acknowledgments

The author thanks the Head of the Department and Dr. Suresh Reddy for their encouragement and support during the preparation of the article.

References

  1. 1.
    Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker Inc., New YorkCrossRefGoogle Scholar
  2. 2.
    Ozin G, Arsenault A (2005) Nanochemistry: a chemistry approach to nanomaterials. Springer, New YorkGoogle Scholar
  3. 3.
    Daniel MC, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  4. 4.
    Kolb D, Simeone FC (2005) Electrochim Acta 50:2989CrossRefGoogle Scholar
  5. 5.
    Bayoumi FM, Ateya BG (2006) Electrochem Commun 8:38CrossRefGoogle Scholar
  6. 6.
    Lee HY, Kim SW, Lee HY (2001) Electrochem Solid State Lett 4A:19CrossRefGoogle Scholar
  7. 7.
    Hong MS, Lee SH, Kim SW (2002) Electrochem Solid State Lett 5A:227CrossRefGoogle Scholar
  8. 8.
    Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2003) Fluid Phase Equilib 210:307CrossRefGoogle Scholar
  9. 9.
    Fu X, Yu H, Peng F, Wang H, Qian Y (2007) Appl Catal A 321:190CrossRefGoogle Scholar
  10. 10.
    Spatz J, Mossmer S, Moller M (1996) Chem Eur J 2:1552CrossRefGoogle Scholar
  11. 11.
    Glass R, Moller M, Spatz JP (2003) Nanotechnology 14:1153CrossRefGoogle Scholar
  12. 12.
    Esparza R, Rosas G, Fuentes ML, Sánchez RJF, Pal U, Ascencio JA, Pérez R (2007) Mater Charact 58:694CrossRefGoogle Scholar
  13. 13.
    Serrano JG, Pal U (2003) Int J Hydrog Energy 28:637CrossRefGoogle Scholar
  14. 14.
    Yang S, Zhang T, Zhang L, Wang S, Yang Z, Ding B (2007) Colloids Surf A 296:37CrossRefGoogle Scholar
  15. 15.
    Lu DL, Tanaka KI (1996) J Phys Chem 100:1833CrossRefGoogle Scholar
  16. 16.
    Huang H, Yang X (2005) Colloids Surf A 255:11CrossRefGoogle Scholar
  17. 17.
    Finot MO, Braybrook GD, McDermott MT (1999) J Electroanal Chem 466:234CrossRefGoogle Scholar
  18. 18.
    Srinivasan V, Weidner JW (1997) J Electrochem Soc 144L:210CrossRefGoogle Scholar
  19. 19.
    Guo S, Wang E (2007) Anal Chim Acta 598:181CrossRefGoogle Scholar
  20. 20.
    Riley DR (2002) Curr Opin Colloid Interface Sci 7:186CrossRefGoogle Scholar
  21. 21.
    Rao CRK, Trivedi DC (2005) Coord Chem Rev 249:613CrossRefGoogle Scholar
  22. 22.
    El-Deab MS, Okajima T, Ohsaka T (2003) J Electrochem Soc 150:A851CrossRefGoogle Scholar
  23. 23.
    El-Deab MS (2009) Electrochim Acta 54:3720CrossRefGoogle Scholar
  24. 24.
    Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y (2009) Biosens Bioelectron 24:1480CrossRefGoogle Scholar
  25. 25.
    Yanez SP, Pingarron JM (2005) Anal Bioanal Chem 382:884CrossRefGoogle Scholar
  26. 26.
    Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601CrossRefGoogle Scholar
  27. 27.
    Wang L, Mao W, Ni D, Di J, Wu Y, Tu Y (2008) Electrochem Commun 10:673CrossRefGoogle Scholar
  28. 28.
    Huang CJ, Chiu PH, Wang YH, Yang CF (2006) J Colloid Interf Sci 303:430CrossRefGoogle Scholar
  29. 29.
    Liu YC, Chuang TC (2003) J Phys Chem B 107:12383CrossRefGoogle Scholar
  30. 30.
    Ting L (2007) Trans Nonferr Met Soc China 17:1343CrossRefGoogle Scholar
  31. 31.
    Rapecki T, Donten M, Stojek Z (2010) Electrochem Commun 12:624CrossRefGoogle Scholar
  32. 32.
    Shen Q, Min Q, Shi J, Jiang L, Hou W, Zhu J (2011) Ultrason Sonochem 18:231CrossRefGoogle Scholar
  33. 33.
    Chen G, Zhang J, Yang S (2007) Electrochem Commun 9:1053CrossRefGoogle Scholar
  34. 34.
    Yu CC, Liu YC, Yang KH, Li CC, Wang CC (2010) Mater Chem Phys (in press)Google Scholar
  35. 35.
    Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) Langmuir 15:701CrossRefGoogle Scholar
  36. 36.
    Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1992) J Phys Chem 96:7497CrossRefGoogle Scholar
  37. 37.
    Martin CR (1994) Science 266:1961CrossRefGoogle Scholar
  38. 38.
    Martin CR (1996) Chem Mater 8:1739CrossRefGoogle Scholar
  39. 39.
    Wang HJ, Zou CW, Yang B, Lu HB, Tian CX, Yang HJ, Li M, Liu CS, Fu DJ, Liu JR (2009) Electrochem Commun 11:2019CrossRefGoogle Scholar
  40. 40.
    Shingubara S, Okino O, Sayama Y, Sakaueand H, Takahagi T (1997) Jpn J Appl Phys 36:7791CrossRefGoogle Scholar
  41. 41.
    Motoyama M, Fukunaka Y, Sakka T, Ogataand YH, Kikuchi SE (2005) J Electroanal Chem 584:84CrossRefGoogle Scholar
  42. 42.
    Lin CC, Juo TJ, Chen YJ, Chiou CH, Wang HW, Liu YL (2008) Desalination 233:113CrossRefGoogle Scholar
  43. 43.
    Wang ZL, Gao RP, Nikoobakht B, El Sayed MA (2000) J Phys Chem B 104:5417CrossRefGoogle Scholar
  44. 44.
    Wang ZL, Mohamed MB, Link S, El Sayed MA (1999) Surf Sci 440:809CrossRefGoogle Scholar
  45. 45.
    Wang ZL (2000) J Phys Chem B 104:1153CrossRefGoogle Scholar
  46. 46.
    Wang JG, Tian ML, Mallouk TE, Chan MH (2004) J Phys Chem B 104:841CrossRefGoogle Scholar
  47. 47.
    Wang HW, Russo B, Cao GZ (2006) Nanotechnology 17:2689CrossRefGoogle Scholar
  48. 48.
    Huang CJ, Chiu PH, Wang YH, Yang CF, Wei FS (2007) J Colloid Interf Sci 306:56CrossRefGoogle Scholar
  49. 49.
    Wu B, Boland JJ (2006) J Colloid Interf Sci 303:611CrossRefGoogle Scholar
  50. 50.
    Lu Y, Yang M, Qu F, Shen G, Yu R (2007) Bioelectrochemistry 71:211CrossRefGoogle Scholar
  51. 51.
    Soleimany L, Dolati A, Ghorbani M (2010) J Electroanal Chem 645:28CrossRefGoogle Scholar
  52. 52.
    Li J, Lin XQ (2007) Anal Chim Acta 596:222CrossRefGoogle Scholar
  53. 53.
    Liu A, Zhu J, Han J, Wu H, Jiang C (2008) Electrochem Commun 10:827CrossRefGoogle Scholar
  54. 54.
    Yang B, Wang S, Tian S, Liu L (2009) Electrochem Commun 11:1230CrossRefGoogle Scholar
  55. 55.
    Rajesh B, Thampi KR, Bonard JM, Xanthopoulos N, Mathicu HJ, Viswanathan B (2003) J Phys Chem B 107:2701CrossRefGoogle Scholar
  56. 56.
    Liu Z, Gan LM, Hong L, Chen W, Lee JY (2005) J Power Sources 139:73CrossRefGoogle Scholar
  57. 57.
    Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) J Phys Chem B 109:22212CrossRefGoogle Scholar
  58. 58.
    Tsai MC, Yeh TK, Tsai CH (2006) Electrochem Commun 8L:1445CrossRefGoogle Scholar
  59. 59.
    Yu P, Yan J, Zhang J, Mao L (2007) Electrochem Commun 9:1139CrossRefGoogle Scholar
  60. 60.
    Lu G, Zangari G (2006) Electrochim Acta 51:2531CrossRefGoogle Scholar
  61. 61.
    Saminathan K, Kamavaram V, Veedu V, Kannan AM (2009) Int J Hydrog Energy 34:3838CrossRefGoogle Scholar
  62. 62.
    Hassan HB (2009) J Fuel Chem Technol 37:23Google Scholar
  63. 63.
    Ye JH, Fedkiw PS (1996) Electrochim Acta 41:221CrossRefGoogle Scholar
  64. 64.
    Baunach T, Ivanova V, Kolb DM, Boyen HG, Ziemann P, Buttner M, Oelhafen P (2004) Adv Mater 16:2024CrossRefGoogle Scholar
  65. 65.
    Qian L, Liu Y, Song Y, Li Z, Yang X (2005) Electrochem Commun 7:1209CrossRefGoogle Scholar
  66. 66.
    Zhu W et al (2009) Electrochim Acta. doi: 10.1016/j.electacta.2009.08.059
  67. 67.
    Heinig NF, Kharbanda N, Pynenburg MR, Zhou XJ, Schultz GA, Leung KT (2008) Mater Lett 62:2285CrossRefGoogle Scholar
  68. 68.
    Pirota K, Navas D, Vélez MH, Nielsch K, Vázquez M (2004) J Alloy Compd 369:18CrossRefGoogle Scholar
  69. 69.
    Masuda H, Fukuda K (1995) Science 268:1466CrossRefGoogle Scholar
  70. 70.
    Schönenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Krüger M (1997) J Phys Chem B101:5497Google Scholar
  71. 71.
    Liang L, Liu J, Windisch CF, Exarhos GJ, Lin Y (2002) Angew Chem Int Ed Engl 41:3665CrossRefGoogle Scholar
  72. 72.
    Shan Y, Yang G, Gong J, Zhang X, Zhu L, Qu L (2008) Electrochim Acta 53:7751CrossRefGoogle Scholar
  73. 73.
    Chen Y, Chen SP, Chen QS, Zhou ZY, Sun SG (2008) Electrochim Acta 53:6938CrossRefGoogle Scholar
  74. 74.
    Cuesta A, Gutirrez C (1996) J Phys Chem B 100:12600CrossRefGoogle Scholar
  75. 75.
    Park H, Ayala P, Deshusses MA, Mulchandani A, Choi H, Myunga NV (2008) Chem Eng J 139:208CrossRefGoogle Scholar
  76. 76.
    Hu J, Chen G, Lo IMC (2006) J Environ Eng 132:709CrossRefGoogle Scholar
  77. 77.
    Lee SJ, Jeong JR, Shin SC, Kim JC, Kim JD (2004) J Magn Magn Mater 282:147CrossRefGoogle Scholar
  78. 78.
    Isse AA, Gottardello S, Maccato C, Gennaro A (2006) Electrochem Commun 8:1707CrossRefGoogle Scholar
  79. 79.
    Hussain S, Pal AK (2008) Mater Lett 62:1874CrossRefGoogle Scholar
  80. 80.
    Starowicz M, Stypuła B, Banas J (2006) Electrochem Commun 8:227CrossRefGoogle Scholar
  81. 81.
    El Abedin SZ, Endres F (2009) Electrochim Acta 54:5673CrossRefGoogle Scholar
  82. 82.
    Dalchiele EA, Marottia RE, Cortes A, Riveros G, Gomez H, Martinez L, Romero R, Leinen D, Martin F, Ramos-Barrado JR (2007) Physica E 37:184CrossRefGoogle Scholar
  83. 83.
    Hu H, Chen G, Zhang J (2008) Carbon 46:1095CrossRefGoogle Scholar
  84. 84.
    Rivera M, Rios-Reyes CH, Mendoza-Huizar LH (2008) Appl Surf Sci 255:1754CrossRefGoogle Scholar
  85. 85.
    Molares MET, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU (2001) Adv Mater 13:62CrossRefGoogle Scholar
  86. 86.
    Yi G, Schwarzacher W (1999) Appl Phys Lett 74:1746CrossRefGoogle Scholar
  87. 87.
    Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690CrossRefGoogle Scholar
  88. 88.
    Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Chem Phys Lett 363:123CrossRefGoogle Scholar
  89. 89.
    Jerome R, Jerome C (1998) Angew Chem Int Ed 37:215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations