Journal of Applied Electrochemistry

, Volume 41, Issue 1, pp 19–27 | Cite as

Corrosion performance of the electroless Ni–P coatings prepared in different conditions and optimized by the Taguchi method

Original Paper


This paper presents an experimental study on the influence of anionic surfactant sodium dodecyl sulfate (SDS), pH, substrate finishing and annealing temperature on the corrosion resistance of electroless nickel phosphorus (Ni–P) coatings using electrochemical techniques and optimization of process parameters based on the Taguchi method. Parameters were selected in three levels and L9 from orthogonal robust array design was used. Corrosion performance of the electroless Ni–P coatings was evaluated by polarization and electrochemical impedance spectroscopy (EIS). Scanning electron microscope (SEM), Energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis were used for studying surface morphology and chemical composition of the electroless Ni–P coatings. The results showed that SDS surfactant causes increasing of corrosion resistance and improves surface morphology. Finally, optimum conditions were achieved as, surfactant concentration: 1.5 g L−1, pH: 5.5, substrate finishing provided with emery paper no, 2000, and annealing temperature of 200 °C.


Electroless Ni–P coating Surfactant Taguchi method EIS 



Funding support for this work was provided by Vice Chancellor Research of International Center for Science, High Technology and Environmental Sciences according to the research project number 618801 in the period of 2009/2010 and is highly acknowledged. The authors would like to acknowledge Mr. Javad Vazifeh Mehrabani for his help in analysis of results.


  1. 1.
    Hamdy AS, Shoeib MA, Abdel Salam OF (2007) Surf Coat Technol 202:162CrossRefGoogle Scholar
  2. 2.
    Davis JR Associates (2001) Surface engineering for corrosion and wear resistance. ASM International, Cleveland, OHGoogle Scholar
  3. 3.
    Riedel W (1991) Electroless nickel plating. Finishing Publications Ltd, Stevenage, Hertfordshire, UKGoogle Scholar
  4. 4.
    Baudrand DW (1994) Electroless nickel plating. Surface engineering. ASM International, Cleveland, OHGoogle Scholar
  5. 5.
    Kerr C, Barker D, Walsh F (1997) Trans Inst Met Finish 75:81Google Scholar
  6. 6.
    Gavrilov GG (1979) Chemical (electroless) nickel plating. Portcullis Press, UKGoogle Scholar
  7. 7.
    Bielinski J, Krolikowski A, Kedzierska I et al (1995) Model Chem 132:685Google Scholar
  8. 8.
    Rajam KS, Rajagopal I, Rajagopalan SR (1990) Plat Surf Finish 77:63Google Scholar
  9. 9.
    Malfatti CF, Veit HM, Menezes TL et al (2007) Surf Coat Technol 201:6318CrossRefGoogle Scholar
  10. 10.
    Shukla N, Ahner J, Weller D (2004) J Magn Magn Mater 1349:272Google Scholar
  11. 11.
    Lin YC, Duh JG (2006) J Alloys Compd 439:74CrossRefGoogle Scholar
  12. 12.
    Myers D (2006) Surfactants science and technology. Wiley, Hoboken, NJGoogle Scholar
  13. 13.
    Tadros FT (2005) Applied surfactants, principles and applications. Wiley-VCH, BerkshireGoogle Scholar
  14. 14.
    Elansezhian R, Ramamoorthy B, Kesavan Nair P (2008) Surf Coat Technol 203:709CrossRefGoogle Scholar
  15. 15.
    Cox DR, Reid N (2000) Theory of the design of experiments. Chapman and Hall/CRC, Boca Raton, FL, USAGoogle Scholar
  16. 16.
    Roy R (1990) A primer on the Taguchi method. Van Nostrand Reinhold, New YorkGoogle Scholar
  17. 17.
    Park SH (1996) Robust design and analysis for quality engineering. Chapman and Hall, London, UKGoogle Scholar
  18. 18.
    Stansbury E, Buchanan R (1998) Fundamentals of electrochemical corrosion. ASM International, Materials Park, OH, p 248Google Scholar
  19. 19.
    Elansezhian R, Ramamoorthy B, Kesavan Nair P (2009) J Mater Process Technol 209:233CrossRefGoogle Scholar
  20. 20.
    Mallory GO, Hajdu JB (eds) (1999) Electroless plating: fundamental and applications. AESF, Orlando, FLGoogle Scholar
  21. 21.
    Farzaneh A, Ehteshamzadeh M, Ghorbani M, Vazifeh Mehrabani J (2010) J Coat Technol Res 7:547CrossRefGoogle Scholar
  22. 22.
    Alirezaei Sh, Monirvaghefi SM, Salehi M et al (2004) Surf Coat Technol 184:170CrossRefGoogle Scholar
  23. 23.
    Tomlinson WJ, Carroll MW (1990) J Mater Sci 25:4972CrossRefGoogle Scholar
  24. 24.
    Mimani T, Mayanna SM (1996) Surf Coat Technol 79:246CrossRefGoogle Scholar
  25. 25.
    Crobu M, Scorciapino A, Elsener B et al (2008) Electrochim Acta 53:3364CrossRefGoogle Scholar
  26. 26.
    Chang YY, Wang DY (2005) Surf Coat Technol 200:2187CrossRefGoogle Scholar
  27. 27.
    Balaraju JN, Sankara Narayanan TSN, Seshadri SK (2001) J Solid State Electrochem 5:334CrossRefGoogle Scholar
  28. 28.
    Ehteshamzadeh M, Shahrabi T, Hosseini MG (2006) Appl Surf Sci 252:2949CrossRefGoogle Scholar
  29. 29.
    Zheludkzevich ML, Sera R, Montemorb MF, Miranda Salvado IM, Ferreira MGS (2005) Electrochim Acta 51:208CrossRefGoogle Scholar
  30. 30.
    Lamaka SV, Zheludkevich ML, Yasakau KA, Montemor MF, Ferreira MGS (2007) Electrochim Acta 52:7231CrossRefGoogle Scholar
  31. 31.
    Wang H, Akid R (2007) Corros Sci 49:4491CrossRefGoogle Scholar
  32. 32.
    Diegle RB, Sorensen NR, Clayton CR et al (1988) J Electrochem Soc 135:1085CrossRefGoogle Scholar
  33. 33.
    Carbajal J, White E (1988) J Electrochem Soc 135:2952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringShahid Bahonar University of KermanKermanIran
  2. 2.Department of MaterialsInternational Center for Science, High Technology and Environmental SciencesKermanIran

Personalised recommendations