Journal of Applied Electrochemistry

, Volume 40, Issue 12, pp 2099–2105 | Cite as

Amperometric hydrogen peroxide biosensor based on a modified gold electrode with silver nanowires

Original Paper

Abstract

A novel amperometric biosensor for the detection of hydrogen peroxide (H2O2) was prepared by immobilizing horseradish peroxidase (HRP) on highly dense silver nanowire (Ag-NW) film. The modified electrode was characterized using UV–Vis spectroscopy, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The electrochemical performances of the electrode were studied by cyclic voltammetry and chronoamperometry. The HRPs immobilized on the surface of Ag-NWs exhibited an excellent electrocatalytic response toward reduction of H2O2. The resulting Ag-NW modified sensor showed a sensitivity of ~2.55 μA μM−1 (correlation coefficient r = 0.9969) with a linear range of 4.8 nM–0.31 μM. Its detection limit was 1.2 nM with a signal-to-noise ratio of 3. The Michaelis–Menten constant K M app and the maximum current density I max of the modified electrode were 0.0071 mM and 8.475 μA, respectively. The preparation process of the proposed biosensor was convenient, and the resulting biosensor showed high sensitivity, low detection limit and good stability.

Keywords

Electrochemical sensor Hydrogen peroxide Horseradish peroxidase Silver nanowires Self-assembled monolayers 

Notes

Acknowledgments

This work was supported by Creative Research Initiatives (Research Center for Time-domain Nano-functional Devices, R16-2007-007-01001-0(2010)) of MEST/KOSEF and by the second stage of the Brain Korea 21 Project in 2010. D.W. acknowledges the support by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0015035).

References

  1. 1.
    Hurdis E, Romeyn H (1954) Anal Chem 26:320CrossRefGoogle Scholar
  2. 2.
    Matsubara C, Kawamoto N, Takamura K (1992) Analyst 117:1781CrossRefGoogle Scholar
  3. 3.
    Santucci R, Laurenti E, Sinibaldi F, Ferrari RP (2002) Biochim Biophys Acta 1596:225Google Scholar
  4. 4.
    Luo L, Zhang Z (2006) Anal Chim Acta 580:14CrossRefGoogle Scholar
  5. 5.
    Spohn U, Preuschoff F, Blankenstein G, Janasek D, Kula MR, Hacker A (1995) Anal Chim Acta 303:109CrossRefGoogle Scholar
  6. 6.
    Hanaoka S, Lin J, Yamada M (2001) Anal Chem 26:320Google Scholar
  7. 7.
    Nakashima K, Maki K, Kawaguchi S, Akiyama S, Tsukamoto Y, Kazuhiro I (1991) Anal Sci 7:709CrossRefGoogle Scholar
  8. 8.
    Lin Y, Cui X, Li L (2005) Electrochem Commun 7:166CrossRefGoogle Scholar
  9. 9.
    Shi G, Lu J, Xu F, Zhou HG, Jin L, Jin J (2000) Anal Chim Acta 413:131CrossRefGoogle Scholar
  10. 10.
    Schachl K, Alemu H, Kalcher K, Ježkova J, Švancara I, Vytřas K (1997) Analyst 122:985CrossRefGoogle Scholar
  11. 11.
    Oungpipat W, Alexander PW, Southwell-Keely P (1995) Anal Chim Acta 309:35CrossRefGoogle Scholar
  12. 12.
    Camacho C, Matías JC, Chico B, Cao R, Gómez L, Simpson BK, Villalonga R (2007) Electroanalysis 19:2538CrossRefGoogle Scholar
  13. 13.
    Ren C, Song Y, Li Z, Zhu G (2005) Anal Bioanal Chem 381:1179CrossRefGoogle Scholar
  14. 14.
    Razola SS, Ruiz BL, Diez NM, Jr HBM, Kauffmann JM (2002) Biosens Bioelectron 17:921Google Scholar
  15. 15.
    Guascito MR, Filippo E, Malitesta C, Manno D, Serra A, Turco A (2008) Biosens Bioelectron 24:1057CrossRefGoogle Scholar
  16. 16.
    Li J, Xiao LT, Liu XM, Zeng GM, Huang GH, Shen GL, Yu RQ (2003) Anal Bioanal Chem 376:902CrossRefGoogle Scholar
  17. 17.
    Habermüller K, Mosbach M, Schuhmann W (2000) Fresenius J Anal Chem 366:560CrossRefGoogle Scholar
  18. 18.
    Song MJ, Yun DH, Jin JH, Min NK, Hong SI (2006) Jpn J Appl Phys 45:7197CrossRefGoogle Scholar
  19. 19.
    Yuan P, Zhuo Y, Chai Y, Ju H (2008) Electroanal 20:1839CrossRefGoogle Scholar
  20. 20.
    Sun Y, Gates B, Mayers B, Xia Y (2002) Nano Lett 2:165CrossRefGoogle Scholar
  21. 21.
    Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) J Mater Chem 12:1765CrossRefGoogle Scholar
  22. 22.
    Hu JQ, Chen Q, Xie ZX, Han GB, Wang RH, Ren B, Zhang Y, Yang ZL, Tian ZQ (2004) Adv Funct Mater 14:183CrossRefGoogle Scholar
  23. 23.
    Arya SK, Solanki PR, Singh RP, Pandey MK, Datta M, Malhotra BD (2006) Talanta 69:918CrossRefGoogle Scholar
  24. 24.
    Luo XL, Xu JJ, Zhang Q, Yang GJ, Chen HY (2005) Biosens Bioelectron 21:190CrossRefGoogle Scholar
  25. 25.
    Duan LS, Xu Q, Xie F, Wang SF (2008) Int J Electrochem Sci 3:118Google Scholar
  26. 26.
    Jia NQ, Xu J, Sun MH, Jiang ZY (2005) Anal Lett 38:1237CrossRefGoogle Scholar
  27. 27.
    Zong S, Cao Y, Zhou Y, Ju H (2007) Anal Chim Acta 582:361CrossRefGoogle Scholar
  28. 28.
    Tan XC, Zhang JL, Tan SW, Zhao DD, Huang ZW, Mi Y, Huang ZY (2009) Sensors 9:6185CrossRefGoogle Scholar
  29. 29.
    Retama JR, López EC, López BR (2005) Talanta 68:99CrossRefGoogle Scholar
  30. 30.
    Schöning MJ, Malkoc Ü, Thust M, Steffen A, Kordos P, Lüth H (2000) Sens Actuators B 65:288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Research Center for Time-domain Nano-functional DevicesKorea UniversitySeoulKorea
  2. 2.School of Electrical EngineeringKorea UniversitySeoulKorea
  3. 3.SKKU Advanced Institute of NanotechnologySungkyunkwan UniversitySuwonKorea
  4. 4.School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations