Journal of Applied Electrochemistry

, Volume 40, Issue 10, pp 1737–1742 | Cite as

Photocatalytic inactivation and removal of algae with TiO2-coated materials

  • Tsuyoshi Ochiai
  • Tomohiro Fukuda
  • Kazuya Nakata
  • Taketoshi Murakami
  • Donald A. Tryk
  • Yoshihiro Koide
  • Akira Fujishima
Original Paper


The capabilities of TiO2-coated materials for the inactivation and removal of algae were investigated. As supports for TiO2, non-woven fabric and Ni foam were chosen. To evaluate the ability of noble metal cocatalyst additions to facilitate the photocatalytic algal inhibition of TiO2-coated materials, Pd nanoparticles were deposited on non-woven fabric-supported TiO2 by photoelectrochemical deposition. The fabric-supported Pd/TiO2 showed higher inhibition activity for algal growth compared to the fabric-supported TiO2 without Pd. In addition, Ni foam-supported TiO2 also showed high inhibition activity, both in laboratory-scale tests and open-air tests. Therefore, TiO2-coated materials with suitable coating methods such as the use of cocatalysts or large surface area can substantially inhibit algal growth. The ability of the TiO2-coated materials to inhibit algae correlated well with their activity for the photocatalytic decolorization of methylene blue, suggesting a nonspecific mechanism in the breakdown of cellular structures.


TiO2 photocatalyst Photoelectrochemical deposition Photocatalytic inactivation Algae 



The authors are grateful to Ms. Y. Matsubayashi (Japan Vilene Co., Ltd.) for preparing the non-woven fabric-supported TiO2 and for her helpful advice and discussion of these experiments. And, the authors are also grateful to Mr. H. Masumitsu (Keyence Corporation) for assistance with the digital microscope.


  1. 1.
    Heng L, Yanling Y, Weijia G, Xing L, Guibai L (2008) Desalination 222:74CrossRefGoogle Scholar
  2. 2.
    Haughey MA, Anderson MA, Whitney RD, Taylor WD, Losee RF (2000) Water Res 34:3440CrossRefGoogle Scholar
  3. 3.
    Burrini D, Lupi E, Klotzner C, Santini C, Lanciotti E (2000) J Water SRT-Aqua 49:139Google Scholar
  4. 4.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515CrossRefGoogle Scholar
  6. 6.
    Hirakawa T, Nosaka Y (2002) Langmuir 18:3247CrossRefGoogle Scholar
  7. 7.
    Ochiai T, Nakata K, Murakami T, Fujishima A, Yao Y, Tryk DA, Kubota Y (2010) Water Res 44:904CrossRefGoogle Scholar
  8. 8.
    Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:4317CrossRefGoogle Scholar
  9. 9.
    Plesch G, Gorbár M, Vogt UF, Jesenák K, Vargová M (2009) Mater Lett 63:461CrossRefGoogle Scholar
  10. 10.
    Hu H, Xiao WJ, Yuan J, Shi JW, Chen MX, Shang Guan WF (2007) J Environ Sci 19:80CrossRefGoogle Scholar
  11. 11.
    Atienzar P, Corma A, García H, Scaiano JC (2004) Chem Mater 16:982CrossRefGoogle Scholar
  12. 12.
    Asano M, Matsukawa Y (2003) Rep Nara Prefect Inst Ind Technol 29:25 (in Japanese)Google Scholar
  13. 13.
    Nishimoto S, Kubo A, Zhang X, Liu Z, Taneichi N, Okui T, Murakami T, Komine T, Fujishima A (2008) Appl Surf Sci 254:5891CrossRefGoogle Scholar
  14. 14.
    An T, Li G, Xiong Y, Zhu X, Xing H, Liu G (2001) Mater Phys Mech 4:101Google Scholar
  15. 15.
    Castenholz RW (1988) Methods Enzymol 167:68CrossRefGoogle Scholar
  16. 16.
    Asano M (2003) Rep Nara Prefect Inst Ind Technol 28:19 (in Japanese)Google Scholar
  17. 17.
    Clovis AL, Glenda JC, David BL, Anthony JO, Darlene KS, Lisa AS (2000) Environ Sci Technol 34:4754CrossRefGoogle Scholar
  18. 18.
    Huang Z, Maness P-C, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) J Photochem Photobiol A 130:163CrossRefGoogle Scholar
  19. 19.
    Telegdi J, Keresztes Z, Pálinkás G, Kálmán E, Sand W (1998) Appl Phys A 66:S639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tsuyoshi Ochiai
    • 1
  • Tomohiro Fukuda
    • 1
    • 2
  • Kazuya Nakata
    • 1
  • Taketoshi Murakami
    • 1
  • Donald A. Tryk
    • 3
  • Yoshihiro Koide
    • 2
  • Akira Fujishima
    • 1
  1. 1.Kanagawa Academy of Science and TechnologyKawasaki, KanagawaJapan
  2. 2.Department of Material and Life Chemistry, Faculty of EngineeringKanagawa UniversityYokohama, KanagawaJapan
  3. 3.Fuel Cell Nanomaterials CenterUniversity of YamanashiYamanashiJapan

Personalised recommendations