Journal of Applied Electrochemistry

, Volume 40, Issue 2, pp 257–263 | Cite as

Electrodeposited platinum catalysts over hierarchical carbon monolithic support

  • Mariano M. Bruno
  • Esteban A. Franceschini
  • Gabriel A. Planes
  • Horacio R. CortiEmail author
Original Paper


Mesoporous deposits of platinum catalysts were electrodeposited over monolith carbon with hierarchical porous structure. The liquid crystal used as a template allowed the electrodeposition of the catalyst on the outer region of the carbon with low penetration in the porous structure. The platinum hexagonal mesostructured deposits exhibits an excellent stability enhanced by the roughness of the carbon support. The mass activity for the electrooxidation of methanol of the mesoporous Pt catalyst supported on the hierarchical carbon is similar to that observed on gold and to that reported for commercial Pt nanoparticulated catalysts, even when this catalyst has a smaller Pt load than the commercial one. Also, the poisoning rate of the mesoporous catalyst is lower than that observed for the commercial catalyst. The integrated system of structured materials could be suitable for the fabrication of modified electrodes in small scale applications.


Platinum Mesoporous catalyst Hierarchical carbon Methanol oxidation Poisoning rate 



Polymer exchange membrane


Hierarchical carbon


Resorcinol formaldehyde


Mesopororous catalyst


Hierarchical carbon–mesopororous catalyst




Reversible hydrogen electrode


Poisoning rate


Root mean square



The authors thank financial support from Agencia Nacional de Promoción Científica y Tecnológica (PICT Start Up 35403), and CONICET (PIP 5977). The contributions of Dr. G. Soler Illia and the National Synchrotron Light Laboratory (LNLS, Campinas – Brazil) in the GISAXS measurement are gratefully acknowledged. GAP and HRC are permanent research fellows of CONICET. MB and EF thank to CONICET for their fellowships.


  1. 1.
    Larminie J, Dicks A (2003) Fuel cell system explained, 2nd edn. Wiley, Chichester, New YorkGoogle Scholar
  2. 2.
    Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11CrossRefGoogle Scholar
  3. 3.
    Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Nat Mater 6:602CrossRefGoogle Scholar
  4. 4.
    Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D (2006) Chem Mater 18:4447CrossRefGoogle Scholar
  5. 5.
    Wan Y, Shi Y, Zhao D (2008) Chem Mater 20:932CrossRefGoogle Scholar
  6. 6.
    Kobayashi N, Takahashi S (2007) European Patent Application, Pat. N: EP1862217Google Scholar
  7. 7.
    Wang HM (2008) J Power Sources 177:506CrossRefGoogle Scholar
  8. 8.
    Abu-Jrai A, Tsolakis A, Megaritis A (2007) Int J Hydrog Energy 32:65Google Scholar
  9. 9.
    Iojoiu EE, Domine ME, Davidian T, Guilhaume N, Mirodatos C (2007) Appl Catal A 323:147CrossRefGoogle Scholar
  10. 10.
    Zhang B, Cai W, Li Y, Xu Y, Shen W (2008) Int J Hydrog Energy 33:4377CrossRefGoogle Scholar
  11. 11.
    Abdelkareem MA, Nakagawa N (2006) J Power Sources 162:114CrossRefGoogle Scholar
  12. 12.
    Haile SM (2003) Acta Mater 51:5981CrossRefGoogle Scholar
  13. 13.
    Kulikovsky A, Kucernak A, Kornyshev AA (2005) Electrochim Acta 50:1323–1333CrossRefGoogle Scholar
  14. 14.
    Zhang J, Yin G-P, Lai Q-Z, Wang Z-B, Cai K-D, Liu P (2007) J Power Sources 168:453CrossRefGoogle Scholar
  15. 15.
    Cheng T, Gyenge EL (2006) Electrochim Acta 51:3904CrossRefGoogle Scholar
  16. 16.
    Planes GA, García G, Pastor E (2007) Electrochem Commun 9:839CrossRefGoogle Scholar
  17. 17.
    Glora M, Wiener M, Petricevic R, Probstle H, Fricke J (2001) J Non-Cryst Solids 285:283CrossRefGoogle Scholar
  18. 18.
    Du H, Li B, Kang F, Fu R, Zeng Y (2007) Carbon 45:429CrossRefGoogle Scholar
  19. 19.
    Meng DD, Cubaud T, Ho C-M, Kim C-J (2007) JMEMS 16:1403Google Scholar
  20. 20.
    Cheng TT, Gyenge EL (2008) J Appl Electrochem 38:51CrossRefGoogle Scholar
  21. 21.
    Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2007) Angew Chem Int Ed 47:373CrossRefGoogle Scholar
  22. 22.
    Antolini E, Salgado JRC, Gonzalez ER (2006) Appl Catal B 63:137CrossRefGoogle Scholar
  23. 23.
    Hampson NA, Willars MJ (1979) J Power Sources 4:191CrossRefGoogle Scholar
  24. 24.
    Kirillov SA, Tsiakaras PE, Romanova IV (2003) J Mol Struct 651:365CrossRefGoogle Scholar
  25. 25.
    Duarte MME, Pilla AS, Sieben JM, Mayer CE (2006) Electrochem Commun 8:159CrossRefGoogle Scholar
  26. 26.
    Bruno MM, Corti HR, Barbero CA (2009) Funct Mat Lett (in press)Google Scholar
  27. 27.
    Gavalda S, Gubbins KE, Hanzawa Y, Kaneko K, Thomson KT (2002) Langmuir 18:2141CrossRefGoogle Scholar
  28. 28.
    Yamamoto T, Mukai SR, Endo A, Nakaiwa M, Tamon H (2003) J Colloid Interface Sci 264:532CrossRefGoogle Scholar
  29. 29.
    Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Pure Appl Chem 66:1739CrossRefGoogle Scholar
  30. 30.
    Attard GS, Bartlett PN, Coleman NRB, Elliott JM, Owen JR, Wang JH (1997) Science 278:838CrossRefGoogle Scholar
  31. 31.
    Jiang J, Kucernak A (2002) J Electroanal Chem 533:153CrossRefGoogle Scholar
  32. 32.
    Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A (2003) Carbon 41:1765CrossRefGoogle Scholar
  33. 33.
    Bruno MM, Cotella NG, Miras MC, Barbero CA (2005) Chem Commun 5896Google Scholar
  34. 34.
    Bruno MM (2007) Thesis, Universidad Nacional de Río Cuarto, ArgentinaGoogle Scholar
  35. 35.
    Barbieri O, Hahn M, Herzog A, Koetz R (2005) Carbon 43:1303CrossRefGoogle Scholar
  36. 36.
    Frackowiak E, Béguin F (2001) Carbon 39:937CrossRefGoogle Scholar
  37. 37.
    Attard GS, Bartlett PN, Coleman NRB, Elliott JM, Owen JR (1998) Langmuir 14:7340CrossRefGoogle Scholar
  38. 38.
    Barlett PN, Gollas B, Guerin S, Marwan J (2002) Phys Chem Chem Phys 4:3835CrossRefGoogle Scholar
  39. 39.
    Mitchell DJ (1983) J Chem Soc Faraday Trans 1:975Google Scholar
  40. 40.
    Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sánchez C (2003) J Am Chem Soc 125:9770CrossRefGoogle Scholar
  41. 41.
    Eggiman BW, Tate MP, Hillhouse HW (2006) Chem Mater 18:723CrossRefGoogle Scholar
  42. 42.
    Jiang J, Kucernak A (2002) J Electroanal Chem 520:64CrossRefGoogle Scholar
  43. 43.
    Jiang J, Kucernak A (2003) J Electroanal Chem 543:187CrossRefGoogle Scholar
  44. 44.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishing, New YorkGoogle Scholar
  45. 45.
    Lim D-H, Lee W-D, Choi D-H, Park D-R, Lee H-I (2008) J Power Sources 185:159CrossRefGoogle Scholar
  46. 46.
    Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CM (2005) Electrochim Acta 51:754CrossRefGoogle Scholar
  47. 47.
    Teng Z-H, Wang G, Wu B, Gao Y (2007) J Power Sources 164:105CrossRefGoogle Scholar
  48. 48.
    Bender F, Chilcott TC, Coster HGL, Hibbert DB, Gooding JJ (2007) Electrochim Acta 52:2640CrossRefGoogle Scholar
  49. 49.
    Etienne M, Walcarius A (2005) Electrochem Comm 7:1449CrossRefGoogle Scholar
  50. 50.
    Rodríguez-Reinoso F (1998) Carbon 36:59CrossRefGoogle Scholar
  51. 51.
    Fraga MA, Jordão E, Mendes MJ, Freitas MMA, Faria JL, Figueiredo JL (2002) J Catal 209:355CrossRefGoogle Scholar
  52. 52.
    Seidel YE, Lindström RW, Jusys Z, Gustavsson M, Hanarp P, Kasemo B, Minkow A, Fecht HJ, Behm RJ (2008) J Electrochem Soc 155:K50CrossRefGoogle Scholar
  53. 53.
    Cheng X, Peng C, You M, Liu L, Zhang Y, Fan Q (2006) Electrochim Acta 51:4620CrossRefGoogle Scholar
  54. 54.
    Guo JW, Xie XF, Wang JH, Shang YM (2006) Electrochim Acta 53:3056CrossRefGoogle Scholar
  55. 55.
    Guo J, Sun G, Wang Q, Wang G, Zhou Z, Tang S, Jiang L, Zhou B, Xin Q (2006) Carbon 44:152CrossRefGoogle Scholar
  56. 56.
    Faghri A, Guo Z (2008) Appl Therm Eng 28:1614CrossRefGoogle Scholar
  57. 57.
    Kim SH, Cha HY, Miesse CM, Jang JH, Oh YS, Cha SW (2009) Int J Hydrog Energy 34:459CrossRefGoogle Scholar
  58. 58.
    Silva VS, Ruffmann B, Vetter S, Mendes A, Madeira LM, Nunes SP (2005) Catal Today 104:205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mariano M. Bruno
    • 1
  • Esteban A. Franceschini
    • 1
  • Gabriel A. Planes
    • 2
  • Horacio R. Corti
    • 1
    Email author
  1. 1.Grupo de Celdas de Combustible, Departamento de Física de la Materia CondensadaCentro Atómico ConstituyentesSan Martín, Buenos AiresArgentina
  2. 2.Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations