Transient film formation on chalcopyrite in acidic solutions

Original Paper

Abstract

The transient time-dependent region characteristic of the anodic passive film formation on chalcopyrite in sulphuric acid solutions was studied by galvanostatic measurements. The occurrence of two passivation subregions was observed. Both followed the Sato–Cohen (logarithmic) model for the growth of anodic passive films. The experimental electric field for the two passivated steps was approximately 105 V cm−1. The electric field for the first step, at lower potentials, decreased with increasing ionic strength, but was pH independent. In the second step, the electric field decreased with increasing pH. The Tafel relationship was followed for constant electrical charge passed. The transition points between first and second step had almost the same electrical charge for different current densities and the electrical charge of the transition point decreased with increasing pH. The effects of temperature and iron/copper ion additions were also studied.

Keywords

Chalcopyrite Sulphuric acid Galvanostatic technique Anodic passivation Kinetic model 

References

  1. 1.
    Moskalyk RR, Alfantazi AM (2003) Miner Eng 16:893CrossRefGoogle Scholar
  2. 2.
    Winkel L, Wochele J, Ludwig C, Alxneit I, Sturzenegger M (2008) Miner Eng 21:731CrossRefGoogle Scholar
  3. 3.
    Baláž P (2000) Extractive metallurgy of activated minerals. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Burkin AR (2001) Chemical hydrometallurgy: theory and principles. Imperial College Press, LondonGoogle Scholar
  5. 5.
    Davenport WGL, King M, Schlessinger M, Biswas AK (2002) Extractive metallurgy of copper, 4th edn. Pergamon Press, LondonGoogle Scholar
  6. 6.
    Habashi F (1978) Chalcopyrite, its chemistry and metallurgy. McGraw-Hill, LondonGoogle Scholar
  7. 7.
    Sequeira CAC, Santos DMF, Chen Y, Anastassakis G (2008) Hydrometallurgy 92:135CrossRefGoogle Scholar
  8. 8.
    Linge HG (1976) Hydrometallurgy 2:51CrossRefGoogle Scholar
  9. 9.
    Antonijević MM, Bogdanović GD (2002) 34th IOC on Mining and Metallurgy, Bor Lake, Yugoslavia. Technical Faculty Bor, p 373Google Scholar
  10. 10.
    Hiroyoshi N, Miki H, Hirajima T, Tsunekawa M (2000) Hydrometallurgy 57:31CrossRefGoogle Scholar
  11. 11.
    Hiroyoshi N, Arai M, Miki H, Tsunekawa M, Hirajima T (2002) Hydrometallurgy 63:257CrossRefGoogle Scholar
  12. 12.
    Klauber C, Parker A, Bronswijk W, Watling H (2001) Int J Miner Process 62:65CrossRefGoogle Scholar
  13. 13.
    Lu ZY, Jeffrey MI, Lawson F (2000) Hydrometallurgy 56:145CrossRefGoogle Scholar
  14. 14.
    Lu ZY, Jeffrey MI, Lawson F (2000) Hydrometallurgy 56:189CrossRefGoogle Scholar
  15. 15.
    Yu PH, Hansen CK, Wadsworth ME (1973) International symposium on hydrometallurgy, Chicago, Illinois, February 25–March 1. AIME, New York, p 375Google Scholar
  16. 16.
    Dixon DG (1995) Hydrometallurgy 39:337CrossRefGoogle Scholar
  17. 17.
    Biegler T, Swift DA (1979) J Appl Electrochem 9:545CrossRefGoogle Scholar
  18. 18.
    Gomez C, Figueroa M, Muñoz J, Blasquez ML, Ballester A (1996) Hydrometallurgy 43:331CrossRefGoogle Scholar
  19. 19.
    Warren GW, Wadsworth ME, El-Raghy SH (1982) Metall Trans B 13:571CrossRefGoogle Scholar
  20. 20.
    Elsherief AE (2002) Miner Eng 15:215CrossRefGoogle Scholar
  21. 21.
    Prasad S, Pandey BD (1998) Miner Eng 11:763CrossRefGoogle Scholar
  22. 22.
    Reddy RG (2003) Metall Mater Trans B 34:137CrossRefGoogle Scholar
  23. 23.
    Choi IH, Yu PY (1999) Phys Status Solidi B 211:143CrossRefGoogle Scholar
  24. 24.
    Crundwell FK (1988) Hydrometallurgy 21:155CrossRefGoogle Scholar
  25. 25.
    De Alvarez CV, Cohen ML, Ley L, Kowalczyk SP, McFeely FR, Shirley DA, Grant RW (1974) Phys Rev B 10:596CrossRefGoogle Scholar
  26. 26.
    Kumar V, Sastry BSR (2005) J Phys Chem Solids 66:99CrossRefGoogle Scholar
  27. 27.
    Shuey RT (1975) Semiconducting ore minerals. Elsevier, New YorkGoogle Scholar
  28. 28.
    Cabri LJ (1973) Econ Geol 68:443CrossRefGoogle Scholar
  29. 29.
    Dutrizac JE (1978) Metall Trans B 9:431CrossRefGoogle Scholar
  30. 30.
    Dutrizac JE (1981) Metall Trans B 12:371CrossRefGoogle Scholar
  31. 31.
    Dutrizac JE (1989) Can Metall Q 28:337Google Scholar
  32. 32.
    Dutrizac JE, MacDonald RJC (1973) Can Metall Q 12:409Google Scholar
  33. 33.
    Arce EM, González I (2002) Int J Miner Process 67:17CrossRefGoogle Scholar
  34. 34.
    Pikna LA, Lux LA, Grygar TB (2006) Chem Pap 60:293CrossRefGoogle Scholar
  35. 35.
    Lazaro I, Nicol MJ (2006) J Appl Electrochem 36:425CrossRefGoogle Scholar
  36. 36.
    Tshilombo AF, Petersen J, Dixon DG (2002) Miner Eng 15:809CrossRefGoogle Scholar
  37. 37.
    Petersen J, Dixon DG (2006) Hydrometallurgy 83:40CrossRefGoogle Scholar
  38. 38.
    O’Connor DJ, Sexton BA, Smart RSC (eds) (1992) Surface analysis methods in materials science. Springer-Verlag, BerlinGoogle Scholar
  39. 39.
    Dixon DG, Mayne DD, Baxter KG (2008) Can Metall Q 47:327Google Scholar
  40. 40.
    Hauffe K (1965) Oxidation of metals. Plenum Press, New YorkGoogle Scholar
  41. 41.
    Young L (1961) Anodic oxide films. Academic Press, LondonGoogle Scholar
  42. 42.
    Holliday RI, Richmond WR (1990) J Electroanal Chem 288:83CrossRefGoogle Scholar
  43. 43.
    Lu YP, Jiang XH, Feng QM, Ou LM, Zhang GF (2007) Chin J Nonfer Met 17:465Google Scholar
  44. 44.
    Mikhlin YL, Tomashevich YV, Asanov IP, Okotrub AV, Varnek VA, Vyalikh DV (2004) Appl Surf Sci 225:395CrossRefGoogle Scholar
  45. 45.
    Cabrera N, Mott NF (1948-1949) Rep Prog Phys 12:163Google Scholar
  46. 46.
    Jelski DA, Nánai L, Vajtai R, Hevesi I, George TF (1993) Mater Sci Eng A 173:193CrossRefGoogle Scholar
  47. 47.
    Ocal C, Ferrer S, Garcia N (1985) Surf Sci 163:335CrossRefGoogle Scholar
  48. 48.
    Roy SK, Sircar SC (1981) J Electrochem Soc India 30:179Google Scholar
  49. 49.
    Ghez R (1973) J Chem Phys 58:1838CrossRefGoogle Scholar
  50. 50.
    Sato N, Cohen M (1964) J Electrochem Soc 111:512CrossRefGoogle Scholar
  51. 51.
    Maier J (2004) Physical chemistry of ionic materials, ions and electrons in solids. Wiley, Chichester, EnglandCrossRefGoogle Scholar
  52. 52.
    Sequeira CAC (1991) EMC’91: Non-ferrous metallurgy-present and future, Brussels, Belgium, September 15–20. Elsevier Applied Science, LondonGoogle Scholar
  53. 53.
    Sequeira CAC, Marquis FDS (1996) Environ Res Forum 1–2:395Google Scholar
  54. 54.
    Chao CY, Lin LF, MacDonald DD (1981) J Electrochem Soc 128:1187CrossRefGoogle Scholar
  55. 55.
    Evans UR (1968) The corrosion and oxidation of metals, section 20–21. Arnold, LondonGoogle Scholar
  56. 56.
    Petersen J, Dixon DG (2002) Miner Eng 15:777CrossRefGoogle Scholar
  57. 57.
    Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2007) J Electrochem Soc 154:C299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Materials Electrochemistry Group, Instituto Superior TécnicoLisbonPortugal

Personalised recommendations