Journal of Applied Electrochemistry

, Volume 40, Issue 5, pp 955–965 | Cite as

Developments in the soluble lead-acid flow battery

  • R. G. A. Wills
  • J. Collins
  • D. Stratton-Campbell
  • C. T. J. Low
  • D. Pletcher
  • Frank C. WalshEmail author
Original Paper


The history of soluble lead flow batteries is concisely reviewed and recent developments are highlighted. The development of a practical, undivided cell is considered. An in-house, monopolar unit cell (geometrical electrode area 100 cm2) and an FM01-LC bipolar (2 × 64 cm2) flow cell are used. Porous, three-dimensional, reticulated vitreous carbon (RVC) and planar, carbon-HDPE composite electrodes have been used in laboratory flow cells. The performance of such cells under constant current density (10–160 mA cm−2) cycling is examined using a controlled flow rate (mean linear flow velocity <14 cm s-1) at a temperature of approximately 298 K. Voltage versus time and voltage versus current density relationships are considered. High charge (<90%), voltage (<80%) and energy (<70%) efficiencies are possible. Possible failure modes encountered during early scale-up from a small, laboratory flow cell to larger, pilot-scale cells are discussed.


Bipolar flow batteries Lead Lead dioxide Methanesulfonic acid Porous Three-dimensional electrodes 



The authors are grateful for financial support via a DTI Technology Programme Contract TP/4/EET/6/I/2296 entitled ‘Redox Flow Cells for Intelligent Grid Management’. The partners in this project, C-Tech Innovation Limited and E-ON UK, have contributed to the realization of data. In particular, the authors are grateful to Mr. J. Bateman of E-ON UK for valuable discussions. Parts of this paper were presented by F.C. Walsh in a plenary lecture to the 8th European Electrochemical Engineering Symposium, Prague, August 24–28, 2008.


  1. 1.
    Frias-Ferrer A, Gonzalez-Garcia J, Szánto DA, Ponce-de-León C, Walsh FC (2006) J Power Sourc 160:716CrossRefGoogle Scholar
  2. 2.
    Schrodt JP, Otting WT, Schoegler JO, Craig DN (1946) Trans Electrochem Soc 90:281Google Scholar
  3. 3.
    White JC, Powers WH, McMurtric RL, Pierce RT (1947) Trans Electrochem Soc 91:21Google Scholar
  4. 4.
    White JC, Balwin JH, Peebles EJ, Powers WH (1949) Lead perchloric acid primary cell. United States Patent 2,492,206Google Scholar
  5. 5.
    McDonald GD, Weissman EY, Roemer TS (1972) J Electrochem Soc 119:660CrossRefGoogle Scholar
  6. 6.
    Beck F (1977) Lead batteries. United States Patent 4,001,037Google Scholar
  7. 7.
    Wurmb R, Beck F, Boehlke K (1978) Secondary battery. United States Patent 4,092,463Google Scholar
  8. 8.
    Henk P (1982) Lead salt electric storage battery. United States Patent 4,331,744Google Scholar
  9. 9.
    Pletcher D, Hazza A, Wills RGA (2004) Phys Chem Chem Phys 6:1773CrossRefGoogle Scholar
  10. 10.
    Pletcher D, Wills RGA (2004) Phys Chem Chem Phys 6:1779CrossRefGoogle Scholar
  11. 11.
    Pletcher D, Wills RGA (2005) J Power Sourc 149:96CrossRefGoogle Scholar
  12. 12.
    Pletcher D, Hazza A, Wills RGA (2005) J Power Sourc 149:103CrossRefGoogle Scholar
  13. 13.
    Pletcher D, Zhou H, Low CTJ, Kear G, Wills RGA, Walsh FC (2008) J Power Sourc 180:621CrossRefGoogle Scholar
  14. 14.
    Pletcher D, Zhou H, Low CTJ, Kear G, Wills RGA, Walsh FC (2008) J Power Sourc 180:630CrossRefGoogle Scholar
  15. 15.
    Clarke RL, Dougherty BJ, Harrison S, Millington JP, Mohanta S (2006) Battery with bifunctional electrolyte. United States Patent 6,986,966Google Scholar
  16. 16.
    Brown CJ, Hammond JK, Pletcher D, Robinson D, Walsh FC (1992) Mass transport in ICI’s filter-press monopolar electrolyser. In: Kreysa G (ed) Part II—laboratory studies in the FM01-LC reactor, Dechema Monograph, vol 123. VCH, Weinheim, pp 299–315Google Scholar
  17. 17.
    Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1993) J Appl Electrochem 23:38CrossRefGoogle Scholar
  18. 18.
    Griffiths M, Ponce-de-León C, Walsh FC (2005) A.I.Ch.E Journal 51(2):682Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • R. G. A. Wills
    • 1
  • J. Collins
    • 2
  • D. Stratton-Campbell
    • 2
  • C. T. J. Low
    • 1
  • D. Pletcher
    • 3
  • Frank C. Walsh
    • 1
    Email author
  1. 1.Energy Technology Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  2. 2.C-Tech Innovation Ltd.ChesterUK
  3. 3.Electrochemistry and Surface Science Group, School of ChemistryUniversity of SouthamptonSouthamptonUK

Personalised recommendations