Journal of Applied Electrochemistry

, Volume 39, Issue 8, pp 1349–1360 | Cite as

Direct electrolytic reduction of solid alumina using molten calcium chloride-alkali chloride electrolytes

  • Xiao Y. YanEmail author
  • Derek J. Fray
Original Paper


Solid alumina was reduced by electro-deoxidation to aluminium metal containing 1.8 and 5.4 at% Ca in molten CaCl2–NaCl and CaCl2–LiCl electrolytes at 900 °C, respectively. The potential-pO2− diagrams for the Al–O–M–Cl (M = Na or Li, or/and Ca) system were constructed to predict equilibrium phase relationships in the electrolytes at 700 and 900 °C. It was found that calcium aluminates were formed as the main intermediate reaction products and were subsequently reduced to form the Al-rich Al–Ca alloys during electro-deoxidation. Calcium and/or lithium, at reduced activities, were created at the cathode especially at 700 °C at the same time as the ionization of the oxygen from the cathode, which resulted in Al2Ca formation. The experimental results were consistent with the thermodynamic predictions.


Electrolysis Calcium chloride-alkali chloride electrolytes Alumina Reduction Thermodynamic properties 



The authors gratefully acknowledge the Light Metals Flagship, a National Research Program of Australia, for financial support. Mrs. N. A. Olshina is thanked for conducting XRD analyses of the samples. Characterization of the samples using the SEM-EDS and EDX by Mr. D. J. Cameron and Dr. A. M. Glenn is appreciated. Assistance from the Analytical Services Group of CSIRO Minerals at Clayton is also acknowledged. Finally, the authors would like to thank the reviewer for the valuable comments that were considered in revising and improving our manuscript.


  1. 1.
    Grjotheim K, Welch BJ (1988) Aluminium smelter technology. Aluminium-Verlag, DusseldorfGoogle Scholar
  2. 2.
    Kirk-Othmer (2002) Encyclopaedia of chemical technology, vol 2. Wiley, New York, p 279Google Scholar
  3. 3.
    Fray DJ (1988) In: Sohn HY, Geskin ES (eds) Metallurgical processes for the year 2000 and beyond. TMS, Warrendale, PA, p 493Google Scholar
  4. 4.
    Edwards L, Kvande H (2001) J Met 53:28Google Scholar
  5. 5.
    Welch BJ, Hyland MM, James BJ (2001) J Met 53:13Google Scholar
  6. 6.
    Tabereaux AT (1992) J Met 44:20Google Scholar
  7. 7.
    Choate WT, Green JAS (2003) U.S. energy requirements for aluminum production: historical perspective, theoretical limits and new opportunities. U.S. Department of Energy, Energy Efficiency and Renewable Energy, Washington, DCGoogle Scholar
  8. 8.
    Cochran CN (1987) Production of aluminium by alternate processes. In: 8th international light metals congress, Leoben, Vienna, p 82Google Scholar
  9. 9.
    Fray DJ, Farthing TW, Chen Z (1998) International patent PCT/GB99/01781, first filing date, 05 JuneGoogle Scholar
  10. 10.
    Chen GZ, Fray DJ, Farthing TW (2000) Nature 407:361CrossRefGoogle Scholar
  11. 11.
    Fray DJ (2000) Metall Mater Trans B 31B:1153CrossRefGoogle Scholar
  12. 12.
    Fray DJ (2001) J Met 53:26Google Scholar
  13. 13.
    Fray DJ (2002) Can Metall Q 41:433Google Scholar
  14. 14.
    Yan XY, Fray DJ (2002) Metall Mater Trans B 33B:685CrossRefGoogle Scholar
  15. 15.
    Nohira T, Yasuda K, Ito Y (2003) Nat Mater 2:397CrossRefGoogle Scholar
  16. 16.
    Jin XB, Gao P, Wang DH, Hu XH, Chen GZ (2004) Angew Chem 116:751CrossRefGoogle Scholar
  17. 17.
    Yan XY, Fray DJ (2005) J Electrochem Soc 152:D12CrossRefGoogle Scholar
  18. 18.
    Yan XY, Fray DJ (2005) J Electrochem Soc 152:E308CrossRefGoogle Scholar
  19. 19.
    Qiu GH, Ma M, Wang DH, Jin XB, Hu XH, Chen GZ (2005) J Electrochem Soc 152:E328CrossRefGoogle Scholar
  20. 20.
    Schwandt C, Fray DJ (2005) Electrochim Acta 51:66CrossRefGoogle Scholar
  21. 21.
    Sakamura Y, Kurata M, Inoue T (2006) J Electrochem Soc 153:D31CrossRefGoogle Scholar
  22. 22.
    Yan XY, Fray DJ (2005) Adv Funct Mater 15:1757CrossRefGoogle Scholar
  23. 23.
    Jiang K, Hu XH, Ma M, Wang DH, Qiu GH, Jin XB, Chen GZ (2006) Angew Chem 118:442CrossRefGoogle Scholar
  24. 24.
    Wenz DA, Johnson I, Wolson RD (1969) J Chem Eng Data 14:252CrossRefGoogle Scholar
  25. 25.
    Story JB, Clarke JT (1957) J Met 9:1449Google Scholar
  26. 26.
    Littlewood R (1962) J Electrochem Soc 109:525CrossRefGoogle Scholar
  27. 27.
    Ferry DM, Picard GS, Tremillon BL (1988) Trans IMM C 97:C21Google Scholar
  28. 28.
    Martinez AM, Castrillejo Y, Barrado E, Harrberg GM, Picard G (1998) J Electroanal Chem 449:67CrossRefGoogle Scholar
  29. 29.
    Dring K, Dashwood R, Inman D (2005) J Electrochem Soc 152:D184CrossRefGoogle Scholar
  30. 30.
    Dring K, Bhagat R, Jackson M, Dashwood R, Inman D (2006) J Alloys Comp 419:103CrossRefGoogle Scholar
  31. 31.
    Bhagat R, Jackson M, Inman D, Dashwood R (2008) J Electrochem Soc 155:E63CrossRefGoogle Scholar
  32. 32.
    Yasuda K, Nohira T, Hagiwara R, Ogata YH (2007) J Electrochem Soc 154:E95CrossRefGoogle Scholar
  33. 33.
    Picard G, Seon F, Tremillon B (1980) Electrochim Acta 25:1453CrossRefGoogle Scholar
  34. 34.
    Picard G, Seon F, Tremillon B (1983) Selective chlorination of oxides in suspension in molten chlorides. In: Proceedings of 1st inter symposium on molten salt chemistry and technology, Kyoto, p 49Google Scholar
  35. 35.
    Tremillon B, Picard G (1987) In: Mamantov G, Mamantov R (eds) Molten salt chemistry. D Reidel Publishing Company, Boston, MA, p 305Google Scholar
  36. 36.
    Boghosian S, Godo A, Mediaas H, Ravlo W, Ostvold T (1991) Acta Chem Scand 45:145CrossRefGoogle Scholar
  37. 37.
    Stern KH, Panayappan R, Flinn DR (1977) J Electrochem Soc 124:641CrossRefGoogle Scholar
  38. 38.
    Janz GJ (1967) Molten salts handbook. Academic Press, New York, p 180Google Scholar
  39. 39.
    Roth RS (ed) (2001) Phase equilibria diagrams, vol XIII. The American Ceramic Society, Ohio, p 84Google Scholar
  40. 40.
    Chartrand P, Pelton AD (2001) Metall Mater Trans A 32A:1361Google Scholar
  41. 41.
    HSC (1999) Outokumpu chemistry for windows, version 4.0, Outokumpu Research Oy Information Service, Pori, FinlandGoogle Scholar
  42. 42.
    Johnson GK, Pierce RD, Poa DS, McPheeters CC (1994) In: Mishra B, Averill WA (eds) Actinide processing: methods and materials. TMS, Warrendale, PA, p 199Google Scholar
  43. 43.
    Wang SL, Zhang FH, Liu XA, Zhang LJ (2008) Thermochim Acta 470:105CrossRefGoogle Scholar
  44. 44.
    Cowley WE (1982) In: Lovering DG (ed) Molten salt technologies. Plenum Press, New York, p 57Google Scholar
  45. 45.
    Haarberg GM, Thonstad J (1989) J Appl Electrochem 19:789CrossRefGoogle Scholar
  46. 46.
    Shackelford JF, Alexander W (2001) CRC Materials science and engineering handbook, 3rd edn. CRC Press, FL, p 565Google Scholar
  47. 47.
    Okamoto H (2003) J Phase Equilib 24:91Google Scholar
  48. 48.
    Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) Science 301:626CrossRefGoogle Scholar
  49. 49.
    Kim SW, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H (2007) Nano Lett 7:1138CrossRefGoogle Scholar
  50. 50.
    Medvedeva JE, Teasley EN, Hoffman MD (2007) Phys Rev B 76:155107CrossRefGoogle Scholar
  51. 51.
    Sharma RA (1970) J Phys Chem 74:3896CrossRefGoogle Scholar
  52. 52.
    Bredig MA, Johnson JW, Smith WT (1955) J Am Chem Soc 77:307CrossRefGoogle Scholar
  53. 53.
    Nakajima T, Minami R, Nakanishi K, Watanabe N (1974) Bull Chem Soc Jpn 47:2071CrossRefGoogle Scholar
  54. 54.
    Murray JL (1983) Bull Alloy Phase Diagr 4:137Google Scholar
  55. 55.
    Heuer AH, Lagerlof KPD (1999) Phil Mag Lett 79:619CrossRefGoogle Scholar
  56. 56.
    Liu J, Poignet JC (1990) J Appl Electrochem 20:864CrossRefGoogle Scholar
  57. 57.
    Kirk-Othmer (1992) Encyclopedia of chemical technology, 4th edn. Wiley, New York, p 783Google Scholar
  58. 58.
    Ozturk K, Zhong Y, Luo AA, Liu ZK (2003) J Met 55:40Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Division of MineralsCommonwealth Scientific and Industrial Research OrganisationClaytonAustralia
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations