Advertisement

Journal of Applied Electrochemistry

, Volume 40, Issue 4, pp 809–819 | Cite as

Response of a proton exchange membrane fuel cell to a sinusoidal current load

  • Helge Weydahl
  • Magnus S. Thomassen
  • Børre T. Børresen
  • Steffen Møller-Holst
Original Paper

Abstract

The load-following capability of a proton exchange membrane fuel cell was studied by measuring the cell voltage response to a sinusoidal current load with large amplitude and varying frequency. A mathematical model was developed, incorporating mass transport and capacitive effects as well as the membrane resistance. The model was capable of separating the faradaic and capacitive currents and predicting the observed hysteresis. At frequencies of the sinusoidal current load below 1 Hz, no appreciable hysteresis in the polarisation curve was observed. When increasing the frequency above 1 Hz, a hysteresis appeared at current densities below 0.2 A cm−2. The model related this hysteresis to capacitive effects. When using air as the cathode feed, hysteresis in the current density range 0.5 A cm−2 and higher appeared above 1 Hz compared to 100 Hz for pure oxygen. The model revealed that hysteresis observed in this current density range was caused by oxygen transport limitations.

Keywords

Proton exchange membrane fuel cells Load-following Dynamic behaviour Transient model 

List of symbols

Roman letters

A

Electrode area (cm2)

bc

Fitting parameter for the concentration overvoltage (V)

bk

Tafel slope (V)

C

Cathode capacitance (F cm−2)

cg

Molar concentration of an ideal gas at a given temperature and 1 bar (mol cm−3 bar−1)

ci

Concentration of species i (mol cm−3)

ci0

Concentration of species i at a reference condition (mol cm−3)

Di

Effective gas diffusivity of species i (cm2 s−1)

e

Electron

E

Electronic potential of an electronically conductive solid phase (V)

Ecell

Total cell voltage (V)

Erev

Reversible electrode potential at the given conditions (V)

E0

Theoretical open circuit potential at standard conditions (V)

E0

Constant voltage fitting parameter (V)

f

Frequency (Hz)

F

Faraday’s constant (C mol−1)

i

Local current density (A cm−2)

i0

Exchange current density (A cm−2)

id

Capacitive current density (A cm−2)

ifar

Faradaic current density (A cm−2)

iint

Internal current density due to hydrogen cross-over (A cm−2)

ilim

Limiting current density (A cm−2)

Mi

Symbol for the chemical formula of species i

mi

Reaction order of species i

Ni

Molar flux of species i (mol cm−2 s−1)

n

Number of electrons transferred

pi

Partial pressure of species i (bar)

R

Ideal gas constant (J K−1mol−1)

Rmem

Membrane resistance (Ω)

Rie

Electrochemical reaction rate per unit volume for species i (mol cm−3s−1)

si

Stoichiometric coefficient of species i

T

Absolute temperature (K)

t

Time (s)

x

Distance from the membrane/cathode catalyst interface (cm)

zi

Charge number of species i

Greek letters

αa

Apparent anodic transfer coefficient

αc

Apparent cathodic transfer coefficient

δ

Thickness of Nernstian diffusion layer (cm)

η

Local overpotential (V)

Φ

Electronic potential of an ionically conductive phase (V)

Superscripts

0

Reference conditions

rev

Reversible conditions

ss

Steady state

Subscripts

CC

Current collector

CCL

Cathode catalyst layer

e

Electrochemical

i

Species i

mem

Membrane

O2

Oxygen

ox

Oxidised species

red

Reduced species

Notes

Acknowledgements

The Research Council of Norway and Aker Kværner Power & Automation Systems AS are kindly acknowledged for financial support. Prototech, Statoil and SINTEF are acknowledged for supporting the writing of this paper.

References

  1. 1.
    Pukrushpan JT, Peng H, Stefanopoulou AG (2004) J Dyn Syst—T ASME 126:14CrossRefGoogle Scholar
  2. 2.
    Ahluwalia RK, Wang X (2005) J Power Sources 139:152CrossRefGoogle Scholar
  3. 3.
    Natarajan D, Nguyen TV (2001) J Electrochem Soc 148:A1324CrossRefGoogle Scholar
  4. 4.
    Brett DJL, Atkins S, Brandon NP et al (2001) Electrochem Commun 3:628CrossRefGoogle Scholar
  5. 5.
    Stockie JM, Promislow K, Wetton BR (2003) Int J Numer Methods Fluids 41:577CrossRefGoogle Scholar
  6. 6.
    Wang Y, Wang C-Y (2005) Electrochim Acta 50:1307CrossRefGoogle Scholar
  7. 7.
    He W, Lin G, Nguyen TV (2003) AIChE J 49:3221CrossRefGoogle Scholar
  8. 8.
    Okada T, Xie G, Tanabe Y (1996) J Electroanal Chem 413:49CrossRefGoogle Scholar
  9. 9.
    Friede W, Raël S, Davat B (2004) IEEE T Power Electron 19:1234CrossRefGoogle Scholar
  10. 10.
    Chia E-SJ, Benziger JB, Kevrekidis IG (2004) AIChE J 50:2320CrossRefGoogle Scholar
  11. 11.
    Chen F, Su Y, Soong C et al (2004) J Electroanal Chem 566:85CrossRefGoogle Scholar
  12. 12.
    Chen F, Chu H-S, Soong C-Y et al (2004) J Power Sources 140:243CrossRefGoogle Scholar
  13. 13.
    Amphlett JC, Mann RF, Peppley BA et al (1996) J Power Sources 61:183CrossRefGoogle Scholar
  14. 14.
    Shan Y, Choe S-Y (2005) J Power Sources 145:30CrossRefGoogle Scholar
  15. 15.
    Pathapati PR, Xue X, Tang J (2005) Renew Energy 30:1CrossRefGoogle Scholar
  16. 16.
    Jones PB, Lakeman JB, Mepsted GO et al (1999) J Power Sources 80:242CrossRefGoogle Scholar
  17. 17.
    Hottinen T, Mikkola M, Lund P (2004) J Power Sources 129:68CrossRefGoogle Scholar
  18. 18.
    Ziegler C, Yu HM, Sundmacher JO (2005) J Electrochem Soc 152A:1555CrossRefGoogle Scholar
  19. 19.
    Hamelin J, Agbossou K, Laperrière A et al (2001) Int J Hydrog Energy 26:625CrossRefGoogle Scholar
  20. 20.
    Amphlett JC, de Oliveira EH, Mann RF et al (1997) J Power Sources 65:173CrossRefGoogle Scholar
  21. 21.
    Williams KA, Keith WT, Marcel MJ et al (2007) J Power Sources 163:971CrossRefGoogle Scholar
  22. 22.
    Schenck ME, Lai J-S, Stanton K (2005) Ann IEEE Appl Power Electron Conf Expo 1:114Google Scholar
  23. 23.
    Lasia A (1999) In: Conway BE, Bockris JOM, White RE (eds) Modern aspects of electrochemistry, vol 32. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  24. 24.
    Weydahl H, Møller-Holst S, Hagen G et al (2007) J Power Sources 171:321CrossRefGoogle Scholar
  25. 25.
    Newman J, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley, Hoboken, New JerseyGoogle Scholar
  26. 26.
    Fraser SD, Hacker V (2008) J Appl Electrochem 38:451CrossRefGoogle Scholar
  27. 27.
    Kim J, Lee SM, Srinivasan S (1995) J Electrochem Soc 142:2670CrossRefGoogle Scholar
  28. 28.
    Squadrito G, Maggio G, Passalacqua E, Lufrano F, Patti A (1999) J Appl Electrochem 29:1449CrossRefGoogle Scholar
  29. 29.
    Pisani L, Murgia G, Valentini M, D’Aguanno B (2002) J Power Sources 108:192CrossRefGoogle Scholar
  30. 30.
    Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamamab B (2006) J Power Sources 159:905CrossRefGoogle Scholar
  31. 31.
    Boillot M, Bonnet C, Jatroudakis N, Carre P, Didierjean S, Lapicque F (2006) Fuel Cells 6:31CrossRefGoogle Scholar
  32. 32.
    Boillot M, Bonnet C, Didierjean S, Lapicque F (2007) J Appl Electrochem 37:103CrossRefGoogle Scholar
  33. 33.
    Ciureanu M, Mikhailenko SD, Kaliaguine S (2003) Catal Today 82:195CrossRefGoogle Scholar
  34. 34.
    Yuan X, Wang H, Sun JC, Zhang J (2007) Int J Hydrog Energy 32:4365CrossRefGoogle Scholar
  35. 35.
    Xie Z, Holdcroft S (2004) J Electroanal Chem 568:247CrossRefGoogle Scholar
  36. 36.
    Malevich D, Halliop E, Peppley BA, Pharoah JG, Karana K (2009) J Electrochem Soc 156:B216CrossRefGoogle Scholar
  37. 37.
    Liu YX, Murphy MW, Baker DR, Gu WB, Ji CC, Jorne J, Gasteiger HA (2009) J Electrochem Soc 156:B970CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Helge Weydahl
    • 1
    • 3
  • Magnus S. Thomassen
    • 2
  • Børre T. Børresen
    • 1
    • 4
  • Steffen Møller-Holst
    • 2
  1. 1.Department of Materials Science and EngineeringNTNUTrondheimNorway
  2. 2.SINTEF Materials and ChemistryTrondheimNorway
  3. 3.Prototech ASBergenNorway
  4. 4.Statoil ASATrondheimNorway

Personalised recommendations