Journal of Applied Electrochemistry

, Volume 40, Issue 3, pp 701–708 | Cite as

An attempt to produce NiFe2O4 powder from electrodeposited Fe–Ni alloy powders by subsequent recrystallization in air

  • U. Lačnjevac
  • B. M. Jović
  • V. M. Maksimović
  • V. D. Jović
Original Paper


The electrodeposition of the Fe–Ni powders from citrate-ammonium chloride containing electrolytes for different Ni/Fe ions concentration ratios at pH 4.0 was investigated by the polarization measurements. The morphology, chemical composition, and phase composition of the obtained powders were investigated using SEM, EDS, and XRD analysis. EDS analysis of as-deposited alloy powders confirmed anomalous co-deposition of Fe and Ni. A common characteristic for all as-deposited powder samples was the presence of cone-shaped cavities and nodules on the big agglomerates of the order of 200–400 μm. After annealing in air at 400, 600, and 700 °C for 3 h, all alloy powders oxidized forming NiO, NiFe2O4, and Fe2O3 phases in different proportions depending on the original powder composition. The NiFe2O4 phase was found to be dominant in the sample with the highest percentage of Fe after annealing at 600 °C.


Fe–Ni Powder Electrodeposition Morphology Composition analysis Recrystallization 



This study was financially supported by the Ministry of Science and Technological Development of the Republic of Serbia through the Project No. 142032G/2006.


  1. 1.
    Morrish AH, Haneda KJ (1981) Appl Phys 52:2496CrossRefGoogle Scholar
  2. 2.
    Ishino K, Narumiya Y (1987) Am Ceram Soc Bull 66:1469Google Scholar
  3. 3.
    Zhang Q, Itoh T, Abe M, Tamaura Y (1992) In: Yamaguchi T, Abe M (eds) Ferrites Proceedings ICF-6, Tokyo, p 481Google Scholar
  4. 4.
    Dube GR, Darshane YS (1993) J Mol Catal 79:285CrossRefGoogle Scholar
  5. 5.
    Reddy GCV, Manorama SV, Rao YJ (1999) Sens Actuators B 55:90CrossRefGoogle Scholar
  6. 6.
    Satyanarayana LK, Reddy KM, Manorama SV (2003) Mater Chem Phys 82:21CrossRefGoogle Scholar
  7. 7.
    Abe M, Itoh T, Tamaura Y et al (1998) J Appl Phys 63:3774CrossRefGoogle Scholar
  8. 8.
    Itoh T, Abe M, Sasao T et al (1989) IEEE Trans Magn 25:4230CrossRefGoogle Scholar
  9. 9.
    Suran G, Heurtel A (1972) J Appl Phys 43:536CrossRefGoogle Scholar
  10. 10.
    Naoe M, Yamanaka S (1970) Jpn J Appl Phys 9:293CrossRefGoogle Scholar
  11. 11.
    Marshall DJ (1971) J Cryst Growth 9:305CrossRefGoogle Scholar
  12. 12.
    Gibart P, Robbins M, Кane AB (1974) J Cryst Growth 24–25:166CrossRefGoogle Scholar
  13. 13.
    Pulliam GR (1967) J Appl Phys 38:1120CrossRefGoogle Scholar
  14. 14.
    Mee JE, Pulliam GR, Archer JL et al (1969) IEEE Trans Magn 5:717CrossRefGoogle Scholar
  15. 15.
    Fitzgerald AG, Engin R (1974) Thin Solid Films 20:317CrossRefGoogle Scholar
  16. 16.
    Itoh H, Takeda T, Naka S (1986) J Mater Sci 21:3677CrossRefGoogle Scholar
  17. 17.
    Tsuchiya T, Yamashiro H, Sei T et al (1992) J Mater Sci 27:3645CrossRefGoogle Scholar
  18. 18.
    Jung DS, Kang YC (2009) J Magn Magn Mater 321:619CrossRefGoogle Scholar
  19. 19.
    Deschanres JL, Langlet M, Joubert JC (1990) J Magn Magn Mater 83:437CrossRefGoogle Scholar
  20. 20.
    Lee PY, Ishizaka K, Suematsu H et al (2006) J Nanocryst Res 8:29CrossRefGoogle Scholar
  21. 21.
    Sartale SD, Lokhande CD, Giersig M et al (2004) J Phys Condens Matter 16:773CrossRefGoogle Scholar
  22. 22.
    Fang J, Shama N, Tung L et al (2003) J Appl Phys 93:7483CrossRefGoogle Scholar
  23. 23.
    Ceylan A, Ozcan S, Ni C et al (2008) J Magn Magn Mater 320:857CrossRefGoogle Scholar
  24. 24.
    Kieling VC (1997) Surf Coat Technol 96:135CrossRefGoogle Scholar
  25. 25.
    Yin K-M, Lin B-T (1996) Surf Coat Technol 78:205CrossRefGoogle Scholar
  26. 26.
    Kim S-H, Sohn K-J, Joo Y-C et al (2005) Surf Coat Technol 199:43CrossRefGoogle Scholar
  27. 27.
    Bento FR, Mascaro LH (2006) Surf Coat Technol 201:1752CrossRefGoogle Scholar
  28. 28.
    Zhelibo EP, Kravets NN, MYu Gamarkin et al (1995) Powder Metall Metal Ceram 34:113CrossRefGoogle Scholar
  29. 29.
    Zhelibo EP, Kravets NN (1997) Powder Metall Metal Ceram 36:264CrossRefGoogle Scholar
  30. 30.
    Chu C-M (2003) J Chin Inst Eng 34:689Google Scholar
  31. 31.
    Lačnjevac U, Jović BM, Jović VD (2009) Electrochim Acta 55:535CrossRefGoogle Scholar
  32. 32.
    Jović VD, Jović BM, Pavlović MG (2006) Electrochim Acta 51:5468CrossRefGoogle Scholar
  33. 33.
    Jović VD, Jović BM, Maksimović V et al (2007) Electrochim Acta 52:4254CrossRefGoogle Scholar
  34. 34.
    Jović VD, Maksimović V, Pavlović MG et al (2006) J Solid State Electrochem 10:373CrossRefGoogle Scholar
  35. 35.
    Zhou X-M, Wei X-W (2009) Cryst Growth Des 9:7CrossRefGoogle Scholar
  36. 36.
    Brenner A (1963) Electrodeposition of alloys: principles and practice. Academic Press Inc, New York and LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • U. Lačnjevac
    • 1
  • B. M. Jović
    • 1
  • V. M. Maksimović
    • 2
  • V. D. Jović
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Nuclear Sciences VinčaBelgradeSerbia

Personalised recommendations