Advertisement

Journal of Applied Electrochemistry

, Volume 40, Issue 5, pp 933–941 | Cite as

Simulation of a high temperature electrolyzer

  • Dominique Grondin
  • Jonathan Deseure
  • Annabelle Brisse
  • Mohsine Zahid
  • Patrick Ozil
Original Paper

Abstract

Based on Solid Oxide Fuel Cell (SOFC) technology, Solid Oxide Electrolysis Cell (SOEC) offers an interesting solution for mass hydrogen production. This study proposes a multiphysics model to predict the SOEC behavior, based on similar charge, mass, and heat transport phenomena as for SOFC. However, the mechanism of water steam reduction on Nickel/Yttria-Stabilized Zirconia (Ni/YSZ) cermet is not yet clearly identified. Therefore, a global approach is used for modeling. The simulated results demonstrated that a Butler–Volmer’s equation including concentration overpotential provides an acceptable estimation of the experimental electric performance under some operating conditions. These simulations highlighted three thermal operating modes of SOEC and showed that temperature distribution depends on gas feeding configurations.

Keywords

Hydrogen production Solid oxide electrolysis cell Multiphysics modeling Diffusion phenomena Electrochemical kinetic description 

Abbreviations

A

Specific electrochemical surface area (m² m−3)

c

Concentration (mol m−3)

Cp

Heat capacity (J mol−1)

d

Mean diameter (m)

D

Diffusion coefficient (m² s−1)

F

Faraday constant (96485 C mol−1)

j

Electrochemical current density (A m²)

J

Total current density (A m²)

K

Permeability (m²)

M

Molecular weight (kg mol−1)

P

Pressure (Pa)

Q

Current source (A m−3)

R

Universal gas constant (8.314 J mol−1 K−1)

V

Potential (V)

T

Temperature (K)

u

Gas velocity (m s−1)

x

Volume fraction (−)

y

Molar fraction (−)

Greek

α

Charge transfer coefficient (−)

Γ

Reaction rate (mol m−3 s−1)

ΔS

Water entropy formation (J mol−1 K−1)

ε

Porosity (−)

η

Overpotential (V)

κ

Thermal conductivity (W m−1 K−1)

Λ

Exchange current density (A m²)

μ

Gas viscosity (Pa s)

ρ

Gas density (kg m−3)

σ

Conductivity (S m−1)

τ

Tortuosity (−)

Φ

Heat source (W m−3)

Subscripts

a

Anode

atm

Atmospheric

c

Cathode

d

Darcy

e

Electrolyte

el

Electric

eq

Equivalent

g

Grain

i,j

Binary coefficient of species i,j

i,k

Knudsen coefficient of species i

io

Ionic

i,bulk

Bulk concentration of species i

ox

Oxidant species

p

Pore

red

Reductive species

ref

Reference parameter

TBP

Triple phase boundary

0

Inlet condition

Superscript

eff

Effective coefficient in electrode

References

  1. 1.
    Dönitz W, Streicher R (1980) Chem Ing Tech 52:436CrossRefGoogle Scholar
  2. 2.
    Dönitz W, Erdle E (1985) Int J Hydrogen Energy 10:291CrossRefGoogle Scholar
  3. 3.
    Eguchi K, Hatagishi T, Arai H (1996) Solid State Ion 86–88:1245CrossRefGoogle Scholar
  4. 4.
    Shi Y, Cai N, Li C (2007) J Power Sour 164:639CrossRefGoogle Scholar
  5. 5.
    Ji Y, Yuan K, Chung JN, Chen YC (2006) J Power Sour 161:380CrossRefGoogle Scholar
  6. 6.
    Ni M, Leung MKH, Leung DYC (2006) Chem Eng Technol 30:587CrossRefGoogle Scholar
  7. 7.
    Herring JS, O’Brien JE, Stoots CM et al (2007) Int J Hydrogen Energy 32:440CrossRefGoogle Scholar
  8. 8.
    Schouler EJL, Kleitz M, Forest E et al (1981) Solid State Ion 5:559CrossRefGoogle Scholar
  9. 9.
    Ni M, Leung MKH, Leung DYC (2006) Chem Eng Technol 29:636CrossRefGoogle Scholar
  10. 10.
    Ni M, Leung MKH, Leung DYC (2007) Electrochim Acta 52:6707CrossRefGoogle Scholar
  11. 11.
    Udagawa J, Aguiar P, Brandon NP (2007) J Power Sour 166:127CrossRefGoogle Scholar
  12. 12.
    Deseure J, Bultel Y, Dessemond L et al (2005) Electrochim Acta 50:2037CrossRefGoogle Scholar
  13. 13.
    Suwanwarangkul R, Croiset E, Fowler MW et al (2003) J Power Sour 122:9CrossRefGoogle Scholar
  14. 14.
    Ho FG, Strieder W (1980) J Chem Phys 73:6296CrossRefGoogle Scholar
  15. 15.
    Mu D, Liu ZS, Huang C et al (2007) J Porous Mater 14:49CrossRefGoogle Scholar
  16. 16.
    Andreassi L, Rubeo G, Ubertini S et al (2007) Int J Hydrogen Energy 32:4559CrossRefGoogle Scholar
  17. 17.
    Reid RC, Sherwood TK (1958) The properties of gases and liquids. McGraw-Hill, New YorkGoogle Scholar
  18. 18.
    Perry RH, Chilton CH, Green DW (eds) (1997) Perry’s chemical engineer’s handbook, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Jeon DH, Nam JH, Kim CJ (2006) J Electrochem Soc 153:A406CrossRefGoogle Scholar
  20. 20.
    Damm DL, Fedorov AG (2005) J Power Sour 143:158CrossRefGoogle Scholar
  21. 21.
    Ni M, Leung MKH, Leung DYC (2007) Int J Hydrogen Energy 32:4648CrossRefGoogle Scholar
  22. 22.
    Grondin D, Deseure J, Zahid M et al (2008) Comput Aided Chem Eng 25:841CrossRefGoogle Scholar
  23. 23.
    Hwang JJ, Chen PY (2006) Int J Heat Mass Transf 49:2315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dominique Grondin
    • 1
  • Jonathan Deseure
    • 1
  • Annabelle Brisse
    • 2
  • Mohsine Zahid
    • 2
  • Patrick Ozil
    • 1
  1. 1.Laboratoire d’Électrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI)UMR 5631 CNRS-INPG-UJFSaint Martin d’HèresFrance
  2. 2.European Institute for Energy Research (EIFER)KarlsruheGermany

Personalised recommendations