Skip to main content
Log in

A modified composite film electrode of polyoxometalate/carbon nanotubes and its electrocatalytic reduction

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Keggin-type polyoxometalate (H4SiMo12O40) and carbon nanotubes (CNTs) coated by poly(allylamine hydrochloride) (PAH) were alternately deposited on glassy carbon (GC) electrodes by an electrochemical growth method in acidic aqueous solution. The preparation of the film electrode was simple and convenient. Thus-prepared multilayer films and the electrochemical behavior of the composite film modified electrode were characterized by UV–vis spectroscopy and cyclic voltammetry. It was shown that the multilayer films are uniform and stable. The resulting multilayer film modified electrode behaves as an electrochemical sensor because of its low overpotential for the catalytic reduction of S2O8 2− and NO2 in acidic aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Ajayan PM (1999) Chem Rev 991:787

    Google Scholar 

  3. Sinnott B (2002) J Nanosci Nanotechnol 2:113

    Article  CAS  Google Scholar 

  4. Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H (2004) J Electroanal Chem 569:47

    Article  CAS  Google Scholar 

  5. Salimi A, Hallage R (2005) Talanta 66:967

    Article  CAS  Google Scholar 

  6. Salimi A, Banks CE, Compton RG (2004) Analyst 129:225

    Article  CAS  Google Scholar 

  7. Girishkumar G, Vinodgopal K, Kamat PV (2004) J Phys Chem B 108:19960

    Article  CAS  Google Scholar 

  8. Liu J, Tian S, Knoll W (2005) Langmuir 21:5596

    Article  CAS  Google Scholar 

  9. Gong K, Dong Y, Xiong S, Chen Y, Mao L (2004) Biosens Bioelectron 20:253

    Article  CAS  Google Scholar 

  10. Deo RP, Wang J (2004) Electrochem Commun 6:284

    Article  CAS  Google Scholar 

  11. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743

    Article  CAS  Google Scholar 

  12. Qian L, Yang X (2006) Talanta 68:721

    Article  CAS  Google Scholar 

  13. Keita B, Nadjo L (2007) J Mol Catal A: Chem 262:190

    Article  CAS  Google Scholar 

  14. Sadakane M, Steckhan E (1998) Chem Rev 98:219

    Article  CAS  Google Scholar 

  15. Keita B, Bouaziz D, Nadjo L, Deronzier A (1990) J Electroanal Chem 279:187

    Article  CAS  Google Scholar 

  16. Reybier K, Malugani JP, Fantini S, Herlem M, Fahys B (2002) J Electrochem Soc 149:E96

    Article  CAS  Google Scholar 

  17. Dong S, Wang B (1992) Electrochim Acta 37:11

    Article  CAS  Google Scholar 

  18. Ca DV, Sun L, Cox JA (2006) Electrochim Acta 51:2188

    Article  CAS  Google Scholar 

  19. Liu M, Dong S (1995) Electrochim Acta 40:197

    Article  CAS  Google Scholar 

  20. Bidan G, Genies EM, Lapkowski MJ (1998) J Electroanal Chem 251:297

    Article  Google Scholar 

  21. McCormac T, Farrell D, Drennan D, Bidan G (2001) Electroanalysis 13:836

    Article  CAS  Google Scholar 

  22. Qian L, Yang X (2005) Electrochem Commun 7:547

    Article  CAS  Google Scholar 

  23. Pan DW, Chen JH, Tao WY, Nie LH, Yao SZ (2006) Langmuir 22:5872

    Article  CAS  Google Scholar 

  24. Qu JY, Zou XQ, Liu BF, Dong SJ (2007) Anal Chim Acta 599:51

    Article  CAS  Google Scholar 

  25. Li ZF, Chen JH, Pan DW, Tao WY, Nie LH, Yao SZ (2006) Electrochim Acta 51:4255

    Article  CAS  Google Scholar 

  26. Rocchiccioli-deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207

    Article  CAS  Google Scholar 

  27. Kim B, Sigmund WM (2004) Langmuir 20:8239

    Article  CAS  Google Scholar 

  28. Cheng L, Niu L, Gong J, Dong SJ (1999) Chem Mater 11:1465

    Article  CAS  Google Scholar 

  29. Wu JG (1994) Technology and applications of fourier transform infrared spectroscopy, Scientific and Technical Documents Publishing House

  30. Zhang MN, Su L, Mao LQ (2006) Carbon 44:276

    Article  CAS  Google Scholar 

  31. Dong S, Cheng L, Zhang X (1998) Electrochim Acta 43:563

    Article  CAS  Google Scholar 

  32. Brett CMA, Brett AMO (1993) Electrochemistry principles, methods, and applications. Oxford University Press, Oxford, p 25

    Google Scholar 

  33. Wang J (1994) Analytical electrochemistry, VCH, New York

    Google Scholar 

  34. Miller PL, Vasudevan D, Gschwend PM, Roberts AL (1998) Environ Sci Technol 32:1269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial support from the National Natural Science Foundation of China (Grant No. 20671017; 20731002). This work was also supported by the Program for Changjiang Scholars and Innovative Research Team in the University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Xu, L., Xu, B. et al. A modified composite film electrode of polyoxometalate/carbon nanotubes and its electrocatalytic reduction. J Appl Electrochem 39, 647–652 (2009). https://doi.org/10.1007/s10800-008-9704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9704-2

Keywords

Navigation