Journal of Applied Electrochemistry

, Volume 38, Issue 12, pp 1677–1681 | Cite as

Manganese oxide precipitated into activated carbon electrodes for electrochemical capacitors

Original Paper

Abstract

Manganese oxide was prepared at different pH and temperatures and then precipitated into activated carbon by the chemical impregnation method. Size distributions of manganese oxide sol were also measured by light scattering. The electrodes were annealed in nitrogen gas at different temperatures. In addition, electrochemical characterization was carried out using cyclic voltammetry (CV) at a scan rate of 25 mV s−1 and chronopotentiometry (CP) with constant-current (10 mA cm−2). Maximum capacitance of 461.3 F g−1 was obtained in a 0.1 M Na2SO4 solution for manganese oxide prepared under optimum conditions (pH = 13.11 and T = 25 ºC) and annealed at a temperature of 195 ºC. The manganese oxide particle size decreased with annealing. This probably leads to increased specific capacitance. Using X-ray photoelectron spectroscopy (XPS) the results reveal that manganese oxide species are transformed from hydroxide to oxide after annealing.

Keywords

Manganese oxide Chemical impregnation Annealing Scanning electron microscope Electrochemical capacitors 

References

  1. 1.
    Conway BE (1999) Electrochemical supercapacitors – scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  2. 2.
    Kotz R, Carlen M (2000) Electrochim Acta 45:2483CrossRefGoogle Scholar
  3. 3.
    Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333CrossRefGoogle Scholar
  4. 4.
    Chen YS, Hu CC (2003) Electrochem Solid-State Lett 6:A210CrossRefGoogle Scholar
  5. 5.
    Jeong YU, Manthiram A (2002) J Electrochem Soc 149:A1419CrossRefGoogle Scholar
  6. 6.
    Hu CC, Wang CC (2003) J Electrochem Soc 150:A1079CrossRefGoogle Scholar
  7. 7.
    Park HP, Park OO, Shin KH et al (2002) Electrochem Solid-State Lett 5:H7CrossRefGoogle Scholar
  8. 8.
    Reddy RN, Reddy RG (2003) J Power Sources 124:330CrossRefGoogle Scholar
  9. 9.
    Burke A (2000) J Power Sources 91:37CrossRefGoogle Scholar
  10. 10.
    Chang JK, Lin CT, Tsai WT (2004) Electrochem Commun 6:666CrossRefGoogle Scholar
  11. 11.
    Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227CrossRefGoogle Scholar
  12. 12.
    Park JH, Ko JM, Park OO (2003) J Electrochem Soc 150:A864CrossRefGoogle Scholar
  13. 13.
    Zhang JR, Chen B, Li WK et al (2002) Int J Mod Phys B 16:4479CrossRefGoogle Scholar
  14. 14.
    Zheng JP (1999) Electrochem Solid-State Lett 2:359CrossRefGoogle Scholar
  15. 15.
    Pang SC, Anderson MA, Thomas WC (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  16. 16.
    Lee HY, Kim SW, Lee HY (2001) Electrochem Solid-State Lett 4:A19CrossRefGoogle Scholar
  17. 17.
    Mulvaney P, Cooper R, Grieser F (1990) J Phys Chem 94:8339CrossRefGoogle Scholar
  18. 18.
    Bordi F, Cametti C, Motta A (2000) J Phys Chem B 104:5318CrossRefGoogle Scholar
  19. 19.
    Endo M, Maeda T, Takeda T et al (2001) J Electrochem Soc 148:A910CrossRefGoogle Scholar
  20. 20.
    Dean JA, Lange NA (1973) Lange’s handbook of chemistry, 8.164. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Sostaric JZ, Mulvaney P, Grieser F (1995) J Chem Soc Faraday Trans 91:2843CrossRefGoogle Scholar
  22. 22.
    Chigane M, Ishikawa M (2000) J Electrochem Soc 147:2246CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical & Materials EngineeringNational Yunlin University of Science and TechnologyDouliuTaiwan, ROC

Personalised recommendations