Journal of Applied Electrochemistry

, Volume 38, Issue 11, pp 1589–1598 | Cite as

Role of alloyed silicon and some inorganic inhibitors in the inhibition of meta-stable and stable pitting of Al in perchlorate solutions

  • Mohammed A. Amin
  • Hamdy H. Hassan
  • Omar A. Hazzazi
  • Mohsen M. Qhatani
Original Paper


The study of both meta-stable and stable pitting events on the surface of pure Al and three Al–Si alloys, namely (Al + 6%Si), (Al + 12%Si) and (Al + 18%Si) alloys, was carried out in deaerated neutral NaClO4 solutions of various concentrations (10−4–10−2 M). Measurements were carried out under the effect of various experimental conditions using potentiodynamic anodic polarization and potentiostatic techniques. The results presented below showed that meta-stable pits (appeared as oscillations in current) form at potentials close to the pitting potential (E pit) and during the induction time for stable pit formation. Various factors affecting the rate of meta-stable and stable pits were studied. The presence of Si as an alloying element in Al reduces the rate of formation of meta-stable pits, corresponding to a reduction in the probability of developing stable pits, and an increase in the pitting potential results. The inhibitive effects of chromate, silicate, molybdate and tungstate on pitting corrosion in Al were also studied. Results obtained showed that these known inhibitors retard both meta-stable and stable pitting events. This makes attainment of stable pit growth more difficult in presence of these inhibitors.


Pitting corrosion Meta-stable and stable pits Al Al–Si alloys Sodium perchlorate solutions Inorganic inhibitors 


  1. 1.
    Shreir LL, Jarman RA, Burstein GT (1994) Corrosion, vol 1, 3rd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  2. 2.
    Pourbaix M (1966) Atlas of chemical equilibria in aqueous solutions. Pergamon Press Ltd., ChennaiGoogle Scholar
  3. 3.
    Kaesche H (1978) Passivity and breakdown of passivity of aluminium in aqueous electrolytes. In: Frankenthal RP, Kruger J (eds) Passivity of metals. Electrochemical Society Incorporated, PrincetonGoogle Scholar
  4. 4.
    Metzger M, Zahavi J (1978) Film growth and breakdown processes on aluminium observed by electron microscopy. In: Frankenthal RP, Kruger J (eds) Passivity of metals. Electrochemical society incorporated, PrincetonGoogle Scholar
  5. 5.
    Frankel GS, Jahnes CV, Brusic V, Davenport AJ (1995) J Electrochem Soc 142:2290CrossRefGoogle Scholar
  6. 6.
    Wood GC, Richardson JA, Abd Rabbo MF, Mapa LB, Sutton WH (1978) The role of flaws in breakdown of passivity leading to pitting of aluminium and crevice corrosion of stainless steel. In: Frankenthal RP, Kruger J (eds) Passivity of metals. Electrochemical Society Incorporated, PrincetonGoogle Scholar
  7. 7.
    Szklarska-Smailowski Z (1999) Corros Sci 41:1743CrossRefGoogle Scholar
  8. 8.
    Baes CF, Mesmer RE (1976) The hydrolysis of cations. WileyGoogle Scholar
  9. 9.
    Szklarska-Smialowska Z (1986) Pitting corrosion of metals. In: NACE, p 347Google Scholar
  10. 10.
    Frankel GS, Stockert L, Humkeler F, Bohni H (1987) Corrosion 43:429Google Scholar
  11. 11.
    Williams DE, Stewart J, Balkwill PH, Frankel GS, Newman RC (eds) In: Proceeding symposium critical factors in localized corrosion 92-9. The Electrochem Soc., Pennington, NJ, p 36Google Scholar
  12. 12.
    Pistorius PC, Burstein GT (1994) Corros Sci 36:525CrossRefGoogle Scholar
  13. 13.
    Pistorius PC, Burstein GT (1992) Corros Sci 33:1885CrossRefGoogle Scholar
  14. 14.
    Pride ST, Scully JR, Hudson JL (1994) J Electrochem Soc 141:3028CrossRefGoogle Scholar
  15. 15.
    Lang GG, Horanyi G (2003) J Electroanal Chem 552:197CrossRefGoogle Scholar
  16. 16.
    Despic AR, Parkhutike VP (1989) In: Bockris JOM, Conway BE, White RM (eds) Modern aspects of electrochemistry, vol 20. Plenum Press, New York, p 397Google Scholar
  17. 17.
    Young L (1961) Anodic oxide films. Academic Press, New York, pp 4–9Google Scholar
  18. 18.
    Horany G, Joo P (2000) J Colloid Interface Sci 213:373CrossRefGoogle Scholar
  19. 19.
    Prinz H, Strehblow HH (1998) Corros Sci 40:1671CrossRefGoogle Scholar
  20. 20.
    Souto RM, Perez Sanchez M, Barrera M, Gonzalez S, Salvarezza RC, Arvia AJ (1992) Electrochim Acta 37:1437CrossRefGoogle Scholar
  21. 21.
    Freiman LI, Kolotyrkin YaM (1965) Corros Sci 5:199CrossRefGoogle Scholar
  22. 22.
    Amin MA, Abd El Rehim SS, El Sherbini EEF (2006) Electrochim Acta 51:4754CrossRefGoogle Scholar
  23. 23.
    Ibrahim MAM, Hassan HH, Abd El Rehim SS, Amin MA (1999) J Solid State Electrochem 3:380CrossRefGoogle Scholar
  24. 24.
    Abd El Rehim SS, Hassan HH, Ibrahim MAM, Amin MA (1999) Monatsh Chem 130:1207Google Scholar
  25. 25.
    Sherbini EEF (2006) Corros Sci 48:1093CrossRefGoogle Scholar
  26. 26.
    Hassan HH, Abd El Rehim SS, Mohamed NF (2002) Corros Sci 44:201Google Scholar
  27. 27.
    Hassan HH (2001) Appl Surf Sci 174:201CrossRefGoogle Scholar
  28. 28.
    Amin MA, Abd El Rehim SS, Moussa SO, Ellithy AS (2008) Electrochim Acta 53:5644CrossRefGoogle Scholar
  29. 29.
    Kruger J (1976) Passivity and its breakdown on iron and iron base alloys. USA-Japan Seminar, NACE, Houston TX, p 91Google Scholar
  30. 30.
    Foley RT (1986) Corrosion 42:277Google Scholar
  31. 31.
    Galvele JR (1978) In: Frankenthal RP, Kruger J (eds) Passivity of metals. The Electrochemical Society Inc, Princeton NJ, p 285Google Scholar
  32. 32.
    Ateya BG, Pickering HW (1978) In: Frankenthal RP, Kruger J (eds) Passivity of metals. The Electrochemical Society Inc., Princeton, NJ, p 350Google Scholar
  33. 33.
    Burstein GT, Pistorius PC, Mattin SP (1993) Corros Sci 35:57CrossRefGoogle Scholar
  34. 34.
    Trueman AR (2005) Corros Sci 47:2240CrossRefGoogle Scholar
  35. 35.
    Morgan PC, Phillips AF, Hebbron MC, Figgures CC, Lake SP, Wimpenny A (2002) Mechanism of corrosion on 2024-T3 aluminium alloy. Corrosion Science Division, Workshop Institute of Corrosion University of Birmingham, 17 AprilGoogle Scholar
  36. 36.
    Wood GC, Brock AJ (1966) Trans Inst Met Fin 44:189Google Scholar
  37. 37.
    Strehblow HH, Doherty CJ (1978) J Electrochem Soc 125:30CrossRefGoogle Scholar
  38. 38.
    Bohni H (1987) Langmiur 3:924CrossRefGoogle Scholar
  39. 39.
    Ilevbare GO, Burstein GT (2001) Corros Sci 43:485CrossRefGoogle Scholar
  40. 40.
    Frankel GS, Newman RG (1992) Critical factors in localized corrosion. The Electrochemical Society, Pennington, NJGoogle Scholar
  41. 41.
    Baszkiewicz J, Kaminski M, Podgorski A, Jagielski J, Gawlik G (1992) Corros Sci 33:815CrossRefGoogle Scholar
  42. 42.
    Sakashita M, Sato N (1979) Corrosion 35:351Google Scholar
  43. 43.
    Craig BD (1991) Fundamental aspects of corrosion films in corrosion science. Plenum Press, New York, USAGoogle Scholar
  44. 44.
    Sugimoto K, Sawada Y (1977) Corros Sci 17:3Google Scholar
  45. 45.
    Aramaki K (2002) Corros Sci 44:871CrossRefGoogle Scholar
  46. 46.
    Aramaki K (2001) Corros Sci 43:591CrossRefGoogle Scholar
  47. 47.
    Weast RC (ed) (1976) Handbook of chemistry and physics. CRC Press, Cleveland, OHGoogle Scholar
  48. 48.
    Pistorius PC, Burstein GT (1992) Philos Trans R Soc Lond A341:531Google Scholar
  49. 49.
    Galvele JR (1987) Corrosion 21:551CrossRefGoogle Scholar
  50. 50.
    Ilevbare GO, Burstein GT (2003) Corros Sci 45:1545CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mohammed A. Amin
    • 1
    • 2
  • Hamdy H. Hassan
    • 1
    • 3
  • Omar A. Hazzazi
    • 4
  • Mohsen M. Qhatani
    • 2
  1. 1.Faculty of Science, Department of ChemistryAin Shams UniversityCairoEgypt
  2. 2.Materials and Corrosion Lab (MCL), Faculty of Science, Department of ChemistryTaif UniversityTaifSaudi Arabia
  3. 3.Faculty of Science, Department of ChemistryKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Faculty of Applied Science, Department of ChemistryUmm Al-Qura UniversityMakkahSaudi Arabia

Personalised recommendations