Journal of Applied Electrochemistry

, Volume 38, Issue 11, pp 1509–1518 | Cite as

Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids

  • M. S. Morad
Original Paper


Rp, potentiodynamic polarization curves and EIS techniques were applied to study the effect of five S-containing amino acids on the corrosion of mild steel in 5% sulfamic acid solution at 40 °C. The compounds are effective inhibitors and the inhibition efficiency follow the order: N-acetylcysteine (ACC) > cysteine (RSH) > S-benzylcysteine (BzC) > cystine (RSSR) ≅ methionine (CH3SR). The inhibitors affect the anodic dissolution of steel by blocking the anodic sites of the surface. EIS measurements indicated that charge transfer is the rate determining step in the absence and presence of the inhibitors and the steel/solution interface can be represented by the equivalent circuit Rs(RctQdl). Adsorption of RSH, CH3SR and RSSR follows the Langmuir model while the Temkin isotherm describes the adsorption of ACC and BzC. From the application of the Flory–Huggins isotherm, the number of water molecules displaced by the adsorbing inhibitor molecules was estimated. The potential of zero charge pzc of mild steel without and with the inhibitors is calculated and the mechanism of corrosion inhibition is discussed in the light of the molecular structure.


Adsorption Amino acids Corrosion inhibition EIS Mild steel Potential of zero charge Sulfamic acid 


  1. 1.
    Yakovleva LA, Vakulenko LA, Vdovenko ID, Lisogor AI, Kalinyuk NN, Novitskaya GN (1987) Ukr Khim Zhurn [Soviet Progress in Chemistry] 53: 709 and references thereinGoogle Scholar
  2. 2.
  3. 3.
    Morad MS (1995) Inhibition and acceleration of mild steel corrosion in pickling acids. PhD thesis, Assiut UniversityGoogle Scholar
  4. 4.
    Abdel Aal MS, Morad MS, Ahmed ZA (1995) Proc 8th Symp Corros Inhib (8 SEIC). Ann Univ Ferrara, NS Sez V, Suppl 10, p 343Google Scholar
  5. 5.
    Morad MS, Hermas AA (2001) J Chem Technol Biotechnol 76:401CrossRefGoogle Scholar
  6. 6.
    Morad MS, Hermas AA, Abdel Aal MS (2002) J Chem Technol Biotechnol 77:486CrossRefGoogle Scholar
  7. 7.
    Morad MS (2005) J Appl Electrochem 35:889CrossRefGoogle Scholar
  8. 8.
    Morad MS (2007) J Appl Electrochem 37:661CrossRefGoogle Scholar
  9. 9.
    Morad MS (2007) J Appl Electrochem 37:1191CrossRefGoogle Scholar
  10. 10.
    Boukamp BA (1989) Equivalent circuit (EQUIVCRT, PAS), User’s manual second version revised edition. University of TwenteGoogle Scholar
  11. 11.
    Epelboin I, Keddam M, Takenouti H (1972) J Appl Electrochem 2:71CrossRefGoogle Scholar
  12. 12.
    Jüttner K (1990) Electrochim Acta 35:1501CrossRefGoogle Scholar
  13. 13.
    Lebrini M, Lagrenée M, Vezin H, Traisnel M, Bentiss F (2007) Corros Sci 49:2254CrossRefGoogle Scholar
  14. 14.
    Popova A, Christov M, Vasilev A (2007) Corros Sci 49:3290CrossRefGoogle Scholar
  15. 15.
    Hassan HH, Abdelghani E, Amin MA (2007) Electrochim Acta 52:6359CrossRefGoogle Scholar
  16. 16.
    Veleda S, Popova A, Raicheva S (1990) Proc 7th Europ Symp Corros Inhib (7 ESCI). Ann Univ Ferrara, Ferrara, NS Sez V, Suppl 9, p 363Google Scholar
  17. 17.
    Lorenz WJ (1986), Dechema monographs. Weinheim Verlag Chemie 101:185Google Scholar
  18. 18.
    Fischer H (1972) Werkst Korros 23:445CrossRefGoogle Scholar
  19. 19.
    Stern M, Geary AL (1957) J Electrochem Soc 104:56CrossRefGoogle Scholar
  20. 20.
    Gowrani T, Yamuna J, Parameswari K, Chitra S (2004) Anti Corros Meth Mater 51:414CrossRefGoogle Scholar
  21. 21.
    Sathiyanarayanan S, Jeyaprabha C, Muralidharan S, Venkatachari G (2006) Appl Surf Sci 252:8107CrossRefGoogle Scholar
  22. 22.
    Popova A, Christov M, Zwetanova A (2007) Corros Sci 49:2031Google Scholar
  23. 23.
    Martinez S, Metikos-Hukovic M (2003) J Appl Electrochem 33:1137CrossRefGoogle Scholar
  24. 24.
    Drazic VJ, Drazic DM (1990) Proc 7th Europ Symp Corros Inhib (7 ESCI). Ann Univ Ferrara, Ferrara, NS Sez V, Suppl 9, p 99Google Scholar
  25. 25.
    Cano E, Polo JL, La Iglesia A, Bastidas JM (2004) Adsorption 10:219CrossRefGoogle Scholar
  26. 26.
    Bockris JO’M, Swinkel DA (1964) J Electrochem Soc 111:737Google Scholar
  27. 27.
    Dahr HP, Conway BE, Joshi KM (1973) Electrochim Acta 18:789CrossRefGoogle Scholar
  28. 28.
    Kern P, Landolt D (2001) J Electrochem Soc 148:B228 and references thereinGoogle Scholar
  29. 29.
    Antropov LI (1967) Corros Sci 7: 607CrossRefGoogle Scholar
  30. 30.
    Barcia OE, Mattos OR (1990) Electrochim Acta 35:1601CrossRefGoogle Scholar
  31. 31.
    Trabanelli G (1987) In: Mansfeld F (ed) Corrosion inhibitors in corrosion mechanisms. Marcel Dekker, Inc., New York, Basel, p 127Google Scholar
  32. 32.
    Aramaki K (1983) Boshoku Gijutsu 32:144Google Scholar
  33. 33.
    Popova A, Christov M, Raicheva S, Sokolova E (2004) Corros Sci 46:1333 and references thereinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Electrochemistry Research Laboratory, Department of Chemistry, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations