Journal of Applied Electrochemistry

, Volume 38, Issue 10, pp 1415–1419 | Cite as

Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction

Original Paper

Abstract

Pd–Ru, Pd and Ru nanoparticles supported on Vulcan XC-72 carbon were prepared by chemical reduction of PdCl2 and/or RuCl3 in aqueous solution using NaBH4 as the reducing agent. Transmission electron microscopy measurements showed that Pd–Ru particles were uniformly dispersed on carbon. The particle size of Pd–Ru is around 5–9 nm. X-ray diffraction analysis indicated that Ru formed alloy with Pd in Pd–Ru/C catalyst. The electroreduction of hydrogen peroxide on Pd–Ru/C, Pd/C and Ru/C in H2SO4 solution was examined by linear sweep voltammetry and chronoamperometry measurements. Results revealed that Pd–Ru/C catalyst exhibited higher electrocatalytic activity for hydrogen peroxide reduction than Pd/C and Ru/C. All the catalysts showed good stability for hydrogen peroxide electroreduction in H2SO4 electrolyte.

Keywords

Palladium Ruthenium Hydrogen peroxide reduction Electrocatalyst Fuel cell 

References

  1. 1.
    Hasvold Ø, Johansen KH (1999) J Power Sources 80:254CrossRefGoogle Scholar
  2. 2.
    Marsh CL, Licht SL, Matthews DE (1995) U. S. Patent, 5445905Google Scholar
  3. 3.
    Dow EG, Yan SG, Medeiros MG et al (2003) U. S. Patent, 0124418Google Scholar
  4. 4.
    Medeiros MG, Bessette RR (2004) J Power Sources 136:226CrossRefGoogle Scholar
  5. 5.
    Yang W, Yang S, Sun W et al (2006) Electrochim Acta 52:9CrossRefGoogle Scholar
  6. 6.
    Yang W, Yang S, Sun W et al (2006) J Power Sources 160:1420CrossRefGoogle Scholar
  7. 7.
    Prater DN, Rusek JJ (2003) Appl Energy 74:135CrossRefGoogle Scholar
  8. 8.
    Raman RK, Prashant SK, Shukla AK (2006) J Power Sources 162:1073CrossRefGoogle Scholar
  9. 9.
    Miley GH, Luo N, Mather J et al (2007) J Power Sources 165:509CrossRefGoogle Scholar
  10. 10.
    Choudhury NA, Raman RK, Sampath S et al (2005) J Power Sources 143:1CrossRefGoogle Scholar
  11. 11.
    Ponce de león C, Walsh FC, Rose A et al (2007) J Power Sources 164:441CrossRefGoogle Scholar
  12. 12.
    Van Venrooij TGJ, Koper MTM (1995) Electrochim Acta 40:1689CrossRefGoogle Scholar
  13. 13.
    Bessette RR, Cichon JM, Dischert DW et al (1999) J Power Sources 80:248CrossRefGoogle Scholar
  14. 14.
    Bessette RR, Medeiros MG, Patrissi CJ et al (2001) J Power Sources 96:240CrossRefGoogle Scholar
  15. 15.
    Štrbac S, Adžić RK (1992) J Electroanal Chem 337:355CrossRefGoogle Scholar
  16. 16.
    Flatgen G, Wasle S, Lubke M et al (1999) Electrochim Acta 44:4499CrossRefGoogle Scholar
  17. 17.
    Cao L, Sun G, Li H et al (2007) Electrochem Commun 9:2541CrossRefGoogle Scholar
  18. 18.
    Guo J, Sun G, Wang Q et al (2006) Carbon 44:152CrossRefGoogle Scholar
  19. 19.
    Li H, Sun G, Cao L et al (2007) Electrochim Acta 52:6622CrossRefGoogle Scholar
  20. 20.
    Solla-Gullon J, Vidal-Iglesias FJ, Montiel V et al (2004) Electrochim Acta 49:5079CrossRefGoogle Scholar
  21. 21.
    Pattabiraman R (1997) Appl Catal A Gen 153:9CrossRefGoogle Scholar
  22. 22.
    Elezović NR, Babić BM, Radmilović VR et al (2008) J Power Sources 175:250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinP.R. China

Personalised recommendations