Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 8, pp 1065–1073 | Cite as

Computer simulation of the effective double layer occurring on a catalyst surface under electro-chemical promotion conditions

  • E. P. M. LeivaEmail author
  • C. Vázquez
  • M. I. Rojas
  • M. M. Mariscal
Original Paper

Abstract

In this work, the structural and energetic properties of two typical catalytic surfaces, Na/Pt(111) and O/Pt(111), are studied by means of quantum mechanical calculations and Monte Carlo Grand Canonical simulations. The simulations were performed with electrostatic potentials at different truncation schemes. In order to elucidate the modification of catalyst surfaces produced by the backspillover of ionic species onto Pt(111), the electrostatic field at the interface due to the electric double layer was also analyzed.

Keywords

Electrochemical promotion NEMCA effect Computer simulations Quantum mechanical calculations 

Notes

Acknowledgments

This work was supported by PIP 5901/05 CONICET, Program BID 1728/OC-AR PICT 06-12485, Agencia Córdoba Ciencia and SECyT UNC, Argentina. We wish to thank C. Mosconi for language assistance.

References

  1. 1.
    Vayenas CG, Bebelis S,Yentekakis IV, Lintz HG (1992) Catal Today 11:303CrossRefGoogle Scholar
  2. 2.
    Makri M, Bebelis S, Vayenas CG, Besocke K, Cavalca C (1996) Surf Sci 369:351CrossRefGoogle Scholar
  3. 3.
    Vayenas CG, Archonta D, Tsiplakides D (2003) J Electroanal Chem 554–555:301CrossRefGoogle Scholar
  4. 4.
    Vayenas C, Brosda S (2002) Solid State Ionics 154–155:243CrossRefGoogle Scholar
  5. 5.
    Vayenas CG, Brosda S, Pliangos C (2003) J Catal 216:487CrossRefGoogle Scholar
  6. 6.
    Vayenas CG (2004) Solid State Ionics 198:321CrossRefGoogle Scholar
  7. 7.
    Brosda S, Vayenas CG (2002) J Catal 208:38CrossRefGoogle Scholar
  8. 8.
    Szabo A, Ostlund NS (1989) Modern quantum chemistry. Graw-Hill, New York, pp 151Google Scholar
  9. 9.
    Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53:R10441CrossRefGoogle Scholar
  10. 10.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys: Condens Matter 14:2745CrossRefGoogle Scholar
  11. 11.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  12. 12.
    Troullier N, Martins JL (1991) Phys Rev B 43:1993CrossRefGoogle Scholar
  13. 13.
    Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425CrossRefGoogle Scholar
  14. 14.
    Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26:1738CrossRefGoogle Scholar
  15. 15.
    Junquera J, Paz O, Sánchez-Portal D, Artacho E (2001) Phys Rev B 64:235111CrossRefGoogle Scholar
  16. 16.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  17. 17.
    Fennell CJ, Gezelter JD (2006) J Phys Chem 124:34104CrossRefGoogle Scholar
  18. 18.
    Frenkel D, Smit B (1996) Understanding molecular simulations. Academic Press, London, 101 ppGoogle Scholar
  19. 19.
    Martin RM (2004) Electronic structure. Cambridge University Press, Cambridge, UK, 96 ppGoogle Scholar
  20. 20.
    Moré S, Seitsonen AP, Berndt W, Bradshaw AM (2001) Phys Rev B 63:75406CrossRefGoogle Scholar
  21. 21.
    Kittel C (1986) Introduction to solid state physics. Wiley, New York, USAGoogle Scholar
  22. 22.
    Allen MP, Tildesley DJ (1992) Computer simulation of liquids. Oxford University Press, New York, USA, 55 ppGoogle Scholar
  23. 23.
    Junquera J, Cohen MH, Rabe KM (2007) J Phys: Condens Matter 19:213203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. P. M. Leiva
    • 1
    Email author
  • C. Vázquez
    • 1
  • M. I. Rojas
    • 1
  • M. M. Mariscal
    • 1
  1. 1.INFIQC, Unidad de Matemática y Física, Fac. de Ciencias QuímicasUniversidad Nacional de CórdobaCordobaArgentina

Personalised recommendations