Journal of Applied Electrochemistry

, Volume 38, Issue 6, pp 809–815 | Cite as

Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium

Original Paper


The efficiency of three heterocyclic compounds, 3-amino-1,2,4-triazole, 4-hydroxy-2H-1-benzopyran-2-one and 4-hydroxy-3-(1H-1,2,4-triazole-3-ylazo)-2H-1-benzopyran-2-one (abbreviated 3-ATA, 4-HQ and 3-ATA-Q, respectively) as steel corrosion inhibitors in 3.5% NaCl has been investigated by Tafel extrapolation and linear polarization methods. Corrosion parameters and adsorption isotherms were determined from current-potential curves. It was found that inhibition efficiencies (η%) and surface coverage (θ) increase with an increase in the concentration of 3-ATA and 3-ATA-Q. However, 4-HQ accelerates the corrosion rate as its concentration increases. The adsorption of 3-ATA and 3-ATA-Q on the steel surface obey Langmuir isotherm. A clear correlation was found between corrosion inhibition efficiency and theoretical parameters obtained by the density functional B3LYP/6-31g(d) method. The experimental results are supported by the theoretical data.


Steel Corrosion Inhibitor Heterocyclic compounds Theoretical calculations 


  1. 1.
    Granase SL, Rosales BM, Oviedo C, Zerbino JO (1992) Corros Sci 33:1439CrossRefGoogle Scholar
  2. 2.
    Zucchi F, Trabanelli G, Brunoro G, Monticelli C, Rochini G (1993) Werkstof Korros 44:264CrossRefGoogle Scholar
  3. 3.
    Osman MM, Khamis E, Michael A (1994) Corros Prev Control 41:60Google Scholar
  4. 4.
    Bilgiç S, Çalışkan N (2001) J Appl Electrochem 31:79CrossRefGoogle Scholar
  5. 5.
    Quraishi M, Sardar R (2002) Corrosion 58:103CrossRefGoogle Scholar
  6. 6.
    Quraishi MA, Jamal D (2003) Mater Chem Phy 78:608CrossRefGoogle Scholar
  7. 7.
    Li X, Deng S, Mu G, Qu Q (2007) Mater Lett 61:2514CrossRefGoogle Scholar
  8. 8.
    Oguzie EE, Li Y, Wang FH (2007) Electrochim Acta 52:6988CrossRefGoogle Scholar
  9. 9.
    Oguzie EE, Li Y, Wang FH (2007) J Colloid Interface Sci 310:90CrossRefGoogle Scholar
  10. 10.
    Gad Allah AG, Moustafa H (1992) J Appl Electrochem 22:644CrossRefGoogle Scholar
  11. 11.
    Bentiss F, Traisnel M, Vezin H, Lagrenée M (2003) Corros Sci 45:371CrossRefGoogle Scholar
  12. 12.
    Durnie W, De Marco R, Kinsella B, Jefferson A, Pejcic B (2005) J Electrochem Soc 152:B1–B11CrossRefGoogle Scholar
  13. 13.
    Stern M, Geary AL (1957) J Electrochem Soc 104:56CrossRefGoogle Scholar
  14. 14.
    Bastidas JM, Pinilla P, Cano E, Polo JL, Miguel S (2005) Corros Sci 45:427CrossRefGoogle Scholar
  15. 15.
    Lopez N, Illas F (1998) J Phys Chem B 102:1430CrossRefGoogle Scholar
  16. 16.
    Ignaczak A, Gomes JANF (1996) Chem Phys Lett 257:609CrossRefGoogle Scholar
  17. 17.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  18. 18.
    HyperChem (TM), Hypercube Inc., Gainesville, Florida, USAGoogle Scholar
  19. 19.
    Fukui K (1975) Theory of orientation and stereo selection. Springer-Verlag, New YorkGoogle Scholar
  20. 20.
    Zhang DQ, Gao LW, Zhou GD (2004) Corros Sci 46:3031CrossRefGoogle Scholar
  21. 21.
    Gao G, Liang C (2007) Electrochim Acta 52:4554CrossRefGoogle Scholar
  22. 22.
    Feng Y, Chen S, Guo Q, Zhang Y, Liu G (2007) J Electroanalytical Chem 602:115CrossRefGoogle Scholar
  23. 23.
    Henriquez-Roman JH, Padilla-Campos L, Paez MA, Zagal JH, Rubio MA, Rangel CM, Costamagna J, Cardenas-Jron G (2005) J Mol Struct (THEOCHEM) 757:1CrossRefGoogle Scholar
  24. 24.
    Ma H, Chen S, Liu Z, Sun Y (2006) J Mol Struct (THEOCHEM) 774:19CrossRefGoogle Scholar
  25. 25.
    Feng Y, Chen S, Zhang H, Li P, Wu L, Guo W (2006) Appl Surf Sci 253:2812CrossRefGoogle Scholar
  26. 26.
    Hasanov R, Sadıkoğlu M, Bilgiç S (2007) Appl Surf Sci 253:3913CrossRefGoogle Scholar
  27. 27.
    Rodrigez-Valdez LM, Martinez-Villafane A, Glossman-Mitnik D (2005) J Mol Struct (THEOCHEM) 713:65CrossRefGoogle Scholar
  28. 28.
    Khalil N (2003) Electrochim Acta 48:2635CrossRefGoogle Scholar
  29. 29.
    Stoyanova A, Petkova G, Peyerimhoff SD (2002) Chem Phys 279:1CrossRefGoogle Scholar
  30. 30.
    Ramachandran S, Jovancievic V, Ward MB (1998) Materials performance. NACEGoogle Scholar
  31. 31.
    Arshadi MR, Lashgari M, Parsafar GA (2004) Mater Chem Phys 86:311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Mineral Research and Exploration InstituteAnkaraTurkey
  2. 2.Department of Physical Chemistry, Faculty of ScienceAnkara UniversityAnkaraTurkey
  3. 3.Department of Chemistry, Faculty of Arts and SciencesPamukkale UniversityDenizliTurkey

Personalised recommendations