Journal of Applied Electrochemistry

, Volume 38, Issue 6, pp 767–775 | Cite as

Morphological and electrochemical investigation of RuO2–Ta2O5 oxide films prepared by the Pechini–Adams method

  • Josimar Ribeiro
  • Michael S. Moats
  • Adalgisa R. De Andrade
Original Paper


Preparation methods can profoundly affect the structural and electrochemical properties of electrocatalytic coatings. In this investigation, RuO2–Ta2O5 thin films containing between 10 and 90 at.% Ru were prepared by the Pechini–Adams method. These coatings were electrochemically and physically characterized by cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The composition and morphology of the oxide were investigated before and after accelerated life tests (ALT) by EDX and SEM. SEM results indicate typical mud-flat-cracking morphology for the majority of the films. High resolution SEMs reveal that pure oxide phases exhibit nanoporosity while binary compositions display a very compact structure. EDX analyses reveal considerable amounts of Ru in the coating even after total deactivation. XRD indicated a rutile-type structure for RuO2 and orthorhombic structure for Ta2O5. XPS data demonstrate that the binding energy of Ta is affected by Ru addition in the thin films, but the binding energy of Ru is not likewise influenced by Ta. The stability of the electrodes was evaluated by ALT performed at 750 mA cm−2 in 80 °C 0.5 mol dm−3 H2SO4. The performance of electrodes prepared by the Pechini–Adams method is 100% better than that of electrodes prepared by standard thermal decomposition.


Ruthenium and tantalum oxide EDS SEM XPS Pechini–Adams method 



Financial support from FAPESP, CNPq and the Center of Advanced Separation Technologies is gratefully acknowledged. J. Ribeiro also acknowledges a PhD fellowship (FAPESP -# 02/06465-0).


  1. 1.
    Vercesi GP, Rolewicz J, Comninellis C, Hinden J (1991) Thermochim Acta 176:31CrossRefGoogle Scholar
  2. 2.
    McKinley KA, Sandler NP (1996) Thin Solid Films 291:440CrossRefGoogle Scholar
  3. 3.
    Ushikubo T (2000) Catal Today 57:331CrossRefGoogle Scholar
  4. 4.
    Ribeiro J, De Andrade AR (2004) J Electrochem Soc 151:D106CrossRefGoogle Scholar
  5. 5.
    Chang TY, Wang X, Evans DA et al (2002) J Power Sources 110:138CrossRefGoogle Scholar
  6. 6.
    Newalkar BL, Komarneni S, Katsuki H (2002) Mater Lett 57:444CrossRefGoogle Scholar
  7. 7.
    Lin SM, Wen TC (1993) J Appl Electrochem 23:487Google Scholar
  8. 8.
    Pelegrino RRL, Vicentin LC, De Andrade AR et al (2002) Electrochem Commun 4:139CrossRefGoogle Scholar
  9. 9.
    Ardizzone S, Carugati A, Trasatti S (1981) J Electroanal Chem 126:287CrossRefGoogle Scholar
  10. 10.
    DeBattisti A, Lodi G, Nanni L et al (1997) Can J Chem 75:1759CrossRefGoogle Scholar
  11. 11.
    Trasatti S, Buzzanca G (1971) J Electroanal Chem 29:1CrossRefGoogle Scholar
  12. 12.
    Coteiro RD, Teruel FS, Ribeiro J et al (2006) J Braz Chem Soc 17:771CrossRefGoogle Scholar
  13. 13.
    Tilak BV, Birss VI, Wang J et al (2001) J Electrochem Soc 148:D112CrossRefGoogle Scholar
  14. 14.
    Trasatti S (1991) Electrochim Acta 36:225CrossRefGoogle Scholar
  15. 15.
    Terezo AJ, Pereira EC (2002) Mater Lett 53:339CrossRefGoogle Scholar
  16. 16.
    Pechini MP, Adams N (1967) US Patent 3, 330, 697:1Google Scholar
  17. 17.
    Santos MC, Terezo AJ, Fernandes VC et al (2005) J Solid State Electrochem 9:91CrossRefGoogle Scholar
  18. 18.
    Ronconi CM, Pereira EC (2001) J Appl Electrochem 31:319CrossRefGoogle Scholar
  19. 19.
    Forti JC, Olivi P, De Andrade AR (2001) Electrochim Acta 47:913CrossRefGoogle Scholar
  20. 20.
    Profeti D, Lassali TAF, Olivi P (2006) J Appl Electrochem 36:883CrossRefGoogle Scholar
  21. 21.
    Ribeiro J, Alves PDP, De Andrade AR (2007) J Mater Sci 42:9293CrossRefGoogle Scholar
  22. 22.
    Garavaglia R, Mari CM, Trasatti S (1984) Surf Technol 23:41CrossRefGoogle Scholar
  23. 23.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, San FranciscoGoogle Scholar
  24. 24.
    Powder Diffraction File: 40-1290; 25-0922; 01-1197 (1996) Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Vol. PDF2-46, Pennsylvania, USAGoogle Scholar
  25. 25.
    Nanni L, Polizzi S, Benedetti A et al (1999) J Electrochem Soc 146:220CrossRefGoogle Scholar
  26. 26.
    Hume-Rothery W, Smallman RE, Hayworth CW (1969) The structure of metals and alloy. LondonGoogle Scholar
  27. 27.
    Kristof J, Szilagyi T, Horvath E et al (2005) Thin Solid Films 485:90CrossRefGoogle Scholar
  28. 28.
    Kotz R, Stucki S (1986) Electrochim Acta 31:1311CrossRefGoogle Scholar
  29. 29.
    Shen JY, Adnot A, Kaliaguine S (1991) Appl Surf Sci 51:47CrossRefGoogle Scholar
  30. 30.
    Rochefort D, Dabo P, Guay D et al (2003) Electrochim Acta 48:4245CrossRefGoogle Scholar
  31. 31.
    Wang CC, Hu CC (2005) Carbon 43:1926CrossRefGoogle Scholar
  32. 32.
    Atanassova E, Dimitrova T, Koprinarova J (1995) Appl Surf Sci 84:193CrossRefGoogle Scholar
  33. 33.
    Kuo Y (1992) J Electrochem Soc 139:579CrossRefGoogle Scholar
  34. 34.
    Trasatti S, Lodi G (1981) Properties of conductive metal oxides with rutile type structure. Elsevier, AmsterdamGoogle Scholar
  35. 35.
    Da Silva LA, Alves VA, Da Silva MAP et al (1997) Electrochim Acta 42:271CrossRefGoogle Scholar
  36. 36.
    Ribeiro J, De Andrade AR, Bento CAS et al (2003) Acta Microsc 12:115Google Scholar
  37. 37.
    Ribeiro J, De Andrade AR (2006) J Electroanal Chem 592:153CrossRefGoogle Scholar
  38. 38.
    Kotz R, Stucki S, Scherson D et al (1984) J Electroanal Chem 172:211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Josimar Ribeiro
    • 1
  • Michael S. Moats
    • 2
  • Adalgisa R. De Andrade
    • 1
  1. 1.Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirao PretoBrazil
  2. 2.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations