Journal of Applied Electrochemistry

, Volume 38, Issue 2, pp 207–214

Comparison of the corrosion behaviour in 5% NaCl solution of Mg alloys NZ30K and AZ91D

  • J. W. Chang
  • L. M. Peng
  • X. W. Guo
  • A. Atrens
  • P. H. Fu
  • W. J. Ding
  • X. S. Wang
Original Paper

Abstract

The corrosion behaviour of AZ91D and NZ30K (Mg–3Nd–0.2Zn–0.4Zr) alloys was investigated in 5% NaCl solution by immersion tests and electrochemical measurements. The immersion tests showed that the corrosion rate of NZ30K was about half that of AZ91D. The localized corrosion of AZ91D was more severe than that of NZ30K due to the higher cathode-to-anode area ratio and higher difference in potential of the cathode phase and the anode matrix. The corrosion of AZ91D concentrated on certain areas and resulted in much deeper corrosion pits, whilst that of NZ30K spread across the surface and led to more uniform and shallow corroded areas. The corrosion products of NZ30K were more compact than those of AZ91D as indicated by SEM. The cyclic polarization curves showed that NZ30K had higher pitting corrosion resistance than AZ91D.

Keywords

AZ91D Corrosion behaviour Cyclic polarization Mg–Nd–Zn–Zr alloy 

References

  1. 1.
    Li Y, Zhang T, Wang FH (2006) Electrochim Acta 51:2845CrossRefGoogle Scholar
  2. 2.
    Ballerini G, Bardi U, Bignucolo R, Ceraolo G (2005) Corros Sci 47:2173CrossRefGoogle Scholar
  3. 3.
    Mathieu S, Rapin C, Steinmetz J, Steinmetz P (2003) Corros Sci 45:2741CrossRefGoogle Scholar
  4. 4.
    Song G, Atrens A, Wu X, Zhang B (1998) Corros Sci 40:1769CrossRefGoogle Scholar
  5. 5.
    Song G, Atrens A (1999) Adv Eng Mater 1:11CrossRefGoogle Scholar
  6. 6.
    Song G, Atrens A (2003) Adv Eng Mater 5:837CrossRefGoogle Scholar
  7. 7.
    Song G (2005) Adv Eng Mater 7:563CrossRefGoogle Scholar
  8. 8.
    Baril G, Blanc C, Pebere N (2001) J Electrochem Soc 148:B489CrossRefGoogle Scholar
  9. 9.
    Lafront AM, Zhang W, Jin S, Tremblay R, Dube D, Ghali E (2005) Electrochem Acta 51:489CrossRefGoogle Scholar
  10. 10.
    Ambat R, Aung NN, Zhou W (2000) Corros Sci 42:1433CrossRefGoogle Scholar
  11. 11.
    Vostry P, Stulikova I, Smola B, Cieslar M, Mordike B (1988) Z Metall 79(5):340Google Scholar
  12. 12.
    Mei LY, Dunlop GL, Westengen H (1996) J Mater Sci 31:387CrossRefGoogle Scholar
  13. 13.
    Rokhlin LL (2003) Magnesium alloys containing rare earth metals. Taylor & Francis, LondonGoogle Scholar
  14. 14.
    Rokhlin LL, Nikitina NI (1994) Z Metall 85:819Google Scholar
  15. 15.
    Song G, StJohn DH (2002) J Light Met 2:1CrossRefGoogle Scholar
  16. 16.
    Zucchi F, Grassi V, Frignani A, Monticelli C, Trabanelli G (2006) J Appl Electrochem 36:195CrossRefGoogle Scholar
  17. 17.
    Rosalbino F, Angelini E, Negri SD, Saccone A, Delfino S (2006) Intermetallics 14:1487CrossRefGoogle Scholar
  18. 18.
    Ben-Hamu G, Eliezer D, Shin KS, Cohen S (2007) J Alloy Comp 431:269CrossRefGoogle Scholar
  19. 19.
    Chang JW, Guo XW, Fu PH, Peng LM, Ding WJ (2007) Electrochim Acta 52:3160CrossRefGoogle Scholar
  20. 20.
    Davis LE, MacDonald NC, Palmburg PW, Riach GE, Weber RE (1976) Handbook of AES. Perkin Elmer Corporation, Eden Prairie, MNGoogle Scholar
  21. 21.
    Guo XW, Chang JW, He SM, Ding WJ, Wang XS (2007) Electrochim Acta 52:2570CrossRefGoogle Scholar
  22. 22.
    Song G, Atrens A, Dargusch M (1999) Corros Sci 41:249CrossRefGoogle Scholar
  23. 23.
    Lunder O, Lein JE, Aune TK, Nisancioglu K (1989) Corrosion 45:741Google Scholar
  24. 24.
    Song G, Bowles AL, StJohn DH (2004) Mater Sci Eng A 366:74CrossRefGoogle Scholar
  25. 25.
    Raman RKS (2004) Metall Mater Trans A 35:2525CrossRefGoogle Scholar
  26. 26.
    Skar JI, Albright D, Kaplan HI (2002) Magnesium technology. The Institute of Metals, LondonGoogle Scholar
  27. 27.
    Nordlien JH, Nisancioglu K, Ono S, Masuko N (1997) J Electrochem Soc 144:461CrossRefGoogle Scholar
  28. 28.
    Nordlien JH, Nisancioglu K, Ono S, Masuko N (1996) J Electrochem Soc 143:2564CrossRefGoogle Scholar
  29. 29.
    Baliga CB, Tsakipoulos P (1993) Mater Sci Technol 9:513Google Scholar
  30. 30.
    Miller PL, Shaw BA, Wendt RG, Mosgier WC (1995) Corros Sci 51:922CrossRefGoogle Scholar
  31. 31.
    Krishnamurthy S, Khobaib M, Robertson E, Froes FH (1988) Mater Sci Eng 99:507CrossRefGoogle Scholar
  32. 32.
    Yao HB, Li Y, Wee ATS, Pan JS, Chai JW (2001) Appl Surf Sci 173:54CrossRefGoogle Scholar
  33. 33.
    Nakatsugawa I, Kamado S, Kojima Y, Ninomiya R, Kubota K (1998) Corros Rev 16:139Google Scholar
  34. 34.
    Hara N, Kobayashi Y, Kagaya D, Akao N (2007) Corros Sci 49:166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • J. W. Chang
    • 1
  • L. M. Peng
    • 1
  • X. W. Guo
    • 1
  • A. Atrens
    • 2
    • 3
  • P. H. Fu
    • 1
  • W. J. Ding
    • 1
  • X. S. Wang
    • 4
  1. 1.National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiChina
  2. 2.Materials EngineeringThe University of QueenslandBrisbaneAustralia
  3. 3.Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dept. 136DubendorfSwitzerland
  4. 4.School of AerospaceTsinghua UniversityBeijingChina

Personalised recommendations