Journal of Applied Electrochemistry

, Volume 37, Issue 12, pp 1429–1437 | Cite as

Influence of carbon support on the performance of platinum based oxygen reduction catalysts in a polymer electrolyte fuel cell

  • Jörg KaiserEmail author
  • Pavel A. Simonov
  • Vladimir I. Zaikovskii
  • Christoph Hartnig
  • Ludwig Jörissen
  • Elena R. Savinova
Original Paper


Novel carbons from the Sibunit family prepared via pyrolysis of hydrocarbons [Yermakov YI, Surovikin VF, Plaksin GV, Semikolenov VA, Likholobov VA, Chuvilin AL, Bogdanov SV (1987) React Kinet Catal Lett 33:435] possess a number of attractive properties for fuel cell applications. In this work Sibunit carbons with BET surface areas ranging from ca. 20 to 420 m2 g−1 were used as supports for platinum and the obtained catalysts were tested as cathodes in a polymer electrolyte fuel cell. The metal loading per unit surface area of carbon support was kept constant in order to maintain similar metal dispersions (∼0.3). Full cell tests revealed a strong influence of the carbon support texture on cell performance. The highest mass specific activities at 0.85 V were achieved for the 40 and 30 wt.% Pt catalysts prepared on the basis of Sibunit carbons with BET surface areas of 415 and 292 m2 g−1. These exceeded the mass specific activities of conventional 20 wt.% Pt/Vulcan XC-72 catalyst by a factor of ca. 4 in oxygen and 6 in air feed. Analysis of the I–U curves revealed that the improved cell performance was related to the improved mass transport in the cathode layers. The mass transport overvoltages were found to depend strongly on the specific surface area and the texture of the support.


Carbon support Oxygen reduction PEMFC Platinum catalyst 



The work was supported through the network “Efficient Oxygen Reduction for Electrochemical Energy Conversion” funded by the German Federal Ministry for Education and Science, Grant 01 SF 0302, and partially by the Russian Foundation for Basic Research under Grant 06-03-32737. The authors would like to thank Plaksin G.V. for providing the samples of Sibunit carbons and Voropaev I.N. for assistance in the synthesis of some catalyst samples.


  1. 1.
    Vielstich W, Lamm A, Gasteiger HA (eds) (2003) Handbook of fuel cells. Fundamentals, technology and applications. Wiley, Chichester Google Scholar
  2. 2.
    Carrette L, Friedrich KA, Stimming U (2000) ChemPhysChem 1:162CrossRefGoogle Scholar
  3. 3.
    Kinoshita K (1988) Carbon. Electrochemical and physicochemical properties. Wiley, New YorkGoogle Scholar
  4. 4.
    Uchida M, Aoyama Y, Tanabe M, Yanagihara N, Eda N, Ohta A (1995) J Electrochem Soc 142:2572CrossRefGoogle Scholar
  5. 5.
    Uchida M, Fukuoka Y, Sugawara Y, Eda N, Ohta A (1996) J Electrochem Soc 143:2245CrossRefGoogle Scholar
  6. 6.
    Xie J, More KL, Zawodzinski TA, Smith WH (2004) J Electrochem Soc 151:A1841CrossRefGoogle Scholar
  7. 7.
    Watanabe M, Tomikawa M, Motoo S (1985) J Electroanal Chem 195:81CrossRefGoogle Scholar
  8. 8.
    Uchida M, Aoyama Y, Eda N, Ohta A (1995) J Electrochem Soc 142:4143CrossRefGoogle Scholar
  9. 9.
    Cui HF, Ye JS, Zhang WD, Wang J, Sheu FS (2005) J Electroanal Chem 577:295CrossRefGoogle Scholar
  10. 10.
    Bessel CA, Laubernds K, Rodriguez NM, Baker RTK (2001) J Phys Chem B 105:1115 CrossRefGoogle Scholar
  11. 11.
    Boxall DL, Deluga GA, Kenik EA, King WD, Lukehart CM (2001) Chem Mater 13:891CrossRefGoogle Scholar
  12. 12.
    Steigerwalt ES, Deluga GA, Lukehart CM (2002) J Phys Chem B 106:760CrossRefGoogle Scholar
  13. 13.
    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169CrossRefGoogle Scholar
  14. 14.
    Ding J, Chan KY, Ren J, Xiao FS (2005) Electrochim Acta 50:3131CrossRefGoogle Scholar
  15. 15.
    Rao V, Simonov PA, Savinova ER, Plaksin GV, Cherepanova SV, Kryukova GN, Stimming U (2005) J Power Sources 145:178CrossRefGoogle Scholar
  16. 16.
    Yermakov YI, Surovikin VF, Plaksin GV, Semikolenov VA, Likholobov VA, Chuvilin AL, Bogdanov SV (1987) React Kinet Catal Lett 33:435CrossRefGoogle Scholar
  17. 17.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  18. 18.
    Joerissen L, Gogel V, Kerres J, Garche J (2002) J Power Sources 105:267CrossRefGoogle Scholar
  19. 19.
    Scherer J (2005) Dissertation. University Ulm, GermanyGoogle Scholar
  20. 20.
    Donnet JB, Bansal RC, Wang MJ (1993) Carbon blacks. Marcel Dekker, New YorkGoogle Scholar
  21. 21.
    Kunz HR, Gruver GA (1975) J Electrochem Soc 122:1279CrossRefGoogle Scholar
  22. 22.
    Bett J, Lundquist L, Washington E, Stonehart P (1973) Electrochim Acta 18:343CrossRefGoogle Scholar
  23. 23.
    Antoine O, Bultel Y, Durand R, Ozil P (1998) Electrochim Acta 43:3681CrossRefGoogle Scholar
  24. 24.
    Maillard F, Martin M, Gloaguen F, Leger JM (2002) Electrochim Acta 47:3431CrossRefGoogle Scholar
  25. 25.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B Environ 56:9CrossRefGoogle Scholar
  26. 26.
    Simonov PA, Likholobov LA (2003) In: Wieckowski A, Savinova ER, Vayenas CG (eds) Catalysis & electrocatalysis at nanoparticle surfaces, vol 1. Marcel Dekker, New York, p. 409Google Scholar
  27. 27.
    Frenkel AI, Hills CW, Nuzzo RG (2001) J Phys Chem B 105:12689CrossRefGoogle Scholar
  28. 28.
    Lundblad A (2004) J New Mater Electrochem Syst 7:21Google Scholar
  29. 29.
    Bernardi DM, Verbrugge MW (1992) J Electrochem Soc. 139:2477CrossRefGoogle Scholar
  30. 30.
    Tarasevich MR, Sadkowski A, Yeager E (1983) In: Conway BE, Bockris JOM, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise of electrochemistry, vol 7. Plenum Press, New York, p. 301Google Scholar
  31. 31.
    Damjanovic A (1992) In: Murphy OJ, Srinivasan S, Conway BE (eds) Electrochemistry in transition, vol 102. Plenum Press, New York, p. 107Google Scholar
  32. 32.
    Kinoshita K (1992) Electrochemical oxygen technology. John Wiley & Sons, New YorkGoogle Scholar
  33. 33.
    Adzic R (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis, vol 102. Wiley-VCH, New York, p. 197Google Scholar
  34. 34.
    Gattrell G, MacDougall B (2003) In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells—fundamentals, technology, applications, vol 2: Electrocatalysis. John Wiley & Sons, Chichester, p. 444Google Scholar
  35. 35.
    Gasteiger HA, Gu W, Makharia R, Mathias MF, Sompalli B (2003) In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells—fundamentals, technology and applications, ch. 46. John Wiley & Sons, ChichesterGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jörg Kaiser
    • 1
    • 2
    Email author
  • Pavel A. Simonov
    • 3
  • Vladimir I. Zaikovskii
    • 3
  • Christoph Hartnig
    • 1
  • Ludwig Jörissen
    • 1
  • Elena R. Savinova
    • 3
  1. 1.Division 3 Electrochemical Energy Storage and ConversionCenter for Solar Energy and Hydrogen ResearchUlmGermany
  2. 2.Degussa-Initiators GmbH & Co. KGPullachGermany
  3. 3.Boreskov Institute of Catalysis Russian Academy of SciencesNovosibirskRussia

Personalised recommendations