Advertisement

A tubular microbial fuel cell

  • K. Scott
  • C. Murano
  • G. Rimbu
Original Paper

Abstract

Cell potential and power performance for tubular microbial fuel cells utilising manure as fuel are reported. The microbial fuel cells do not use a mediator, catalysts or a proton exchange membrane. The cell design has been scaled up to a size of 1.8 m in length using electrodes of 0.4 m2 in area. The cell does not require a strictly controlled anaerobic environment and has potential practical applications when adapted into the form of a helix allowing fuel to flow through it. The cell could be used for power generation in remote applications. The peak power density of the cell is over 3 μW cm −2 (30 mW m−2). The performance can be improved by a more effective design of the interface between the anode and cathode chambers.

Keywords

Fuel cell Microbial fuel cell Tubular Carbohydrate Waste Manure 

Notes

Acknowledgements

Shell Global solutions and EPSRC supported this work through a CASE studentship to C Murano. Research was performed in laboratories facilities provided by an EPSRC-HEFCE JIF award. The support of the European Union for Transfer of Knowledge award (MTKD-CT-2004-517215) for biological fuel cells is acknowledged.

References

  1. 1.
    Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovely DR (1996) Appl and Environ Microbiol 62:1531Google Scholar
  2. 2.
    Lovely DR (2002) OMICS J Integr Biol 6:331CrossRefGoogle Scholar
  3. 3.
    Bond DR, Holmes DE, Tender LM, Lovely DR (2002) Science 295:483CrossRefGoogle Scholar
  4. 4.
    Hyun MS, Kim BH, Chang IN, Park S, Kim HJ, Kim T, Kim MA, Park DH (1999) J Microbiol 38:206Google Scholar
  5. 5.
    Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) Enzyme Microbiol Technol 30:145CrossRefGoogle Scholar
  6. 6.
    Park H, Kim BH, Kim HS (2001) Anaerobe 7:297CrossRefGoogle Scholar
  7. 7.
    Pham CA, Jung SJ, Phung NT, Lee J, Chang IN, Kim BH, Yi H, Chun J (2003) Microbiol Lett 223:129CrossRefGoogle Scholar
  8. 8.
    Tender LM, Reimers CE, Stecher III HA, Holme DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovely DR (2002) Nature Biotechnol 20:821 Google Scholar
  9. 9.
    Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Process Biochem 39:1007CrossRefGoogle Scholar
  10. 10.
    Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) Biotechnol Lett 25:1531CrossRefGoogle Scholar
  11. 11.
    Habermann W, Pommer EH (1991) Appl Microbiol Biotechnol 35:128CrossRefGoogle Scholar
  12. 12.
    Liu H, Ramnarayanan R, Logan BE (2004) Environ Sci Technol 38:2281CrossRefGoogle Scholar
  13. 13.
    Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Environ Sci Technol 39:8077CrossRefGoogle Scholar
  14. 14.
    He Z, Minteer SD, Angenent LT (2005) Environ Sci Technol 39:5262CrossRefGoogle Scholar
  15. 15.
    Kim HJ, Park H, Hyun MS, Chang IS, Kim M, Kim BH (2002) Enzyme and Microbial Technol 30:145CrossRefGoogle Scholar
  16. 16.
    Kreysa G, Sell D (1990) Berichte der Bunsen-Gesellschaft Phy Chem 90:1042Google Scholar
  17. 17.
    Allen RM, Bennetto HP (1993) Applied Biochem and Biotechnol 39:27CrossRefGoogle Scholar
  18. 18.
    Davis F, Higson SPJ (2007) Biosen Bioelectron 22:1224CrossRefGoogle Scholar
  19. 19.
    Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biosens Bioelectro 21:2015Google Scholar
  20. 20.
    Lowy JG, Tender LM, Zeikus JG, Park DH, Lovely DR (2006) Biosens Bioelectron 21:2058CrossRefGoogle Scholar
  21. 21.
    Lovely DR (2006) Curr Opin Biotechnol 17:327CrossRefGoogle Scholar
  22. 22.
    Cheng S, Liu H, Logan BE (2006) Environ Sci Technol 40:364CrossRefGoogle Scholar
  23. 23.
    Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Electrochem Comm 7:1405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced MaterialsUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations