A tubular microbial fuel cell

  • K. Scott
  • C. Murano
  • G. Rimbu
Original Paper


Cell potential and power performance for tubular microbial fuel cells utilising manure as fuel are reported. The microbial fuel cells do not use a mediator, catalysts or a proton exchange membrane. The cell design has been scaled up to a size of 1.8 m in length using electrodes of 0.4 m2 in area. The cell does not require a strictly controlled anaerobic environment and has potential practical applications when adapted into the form of a helix allowing fuel to flow through it. The cell could be used for power generation in remote applications. The peak power density of the cell is over 3 μW cm −2 (30 mW m−2). The performance can be improved by a more effective design of the interface between the anode and cathode chambers.


Fuel cell Microbial fuel cell Tubular Carbohydrate Waste Manure 



Shell Global solutions and EPSRC supported this work through a CASE studentship to C Murano. Research was performed in laboratories facilities provided by an EPSRC-HEFCE JIF award. The support of the European Union for Transfer of Knowledge award (MTKD-CT-2004-517215) for biological fuel cells is acknowledged.


  1. 1.
    Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovely DR (1996) Appl and Environ Microbiol 62:1531Google Scholar
  2. 2.
    Lovely DR (2002) OMICS J Integr Biol 6:331CrossRefGoogle Scholar
  3. 3.
    Bond DR, Holmes DE, Tender LM, Lovely DR (2002) Science 295:483CrossRefGoogle Scholar
  4. 4.
    Hyun MS, Kim BH, Chang IN, Park S, Kim HJ, Kim T, Kim MA, Park DH (1999) J Microbiol 38:206Google Scholar
  5. 5.
    Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) Enzyme Microbiol Technol 30:145CrossRefGoogle Scholar
  6. 6.
    Park H, Kim BH, Kim HS (2001) Anaerobe 7:297CrossRefGoogle Scholar
  7. 7.
    Pham CA, Jung SJ, Phung NT, Lee J, Chang IN, Kim BH, Yi H, Chun J (2003) Microbiol Lett 223:129CrossRefGoogle Scholar
  8. 8.
    Tender LM, Reimers CE, Stecher III HA, Holme DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovely DR (2002) Nature Biotechnol 20:821 Google Scholar
  9. 9.
    Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Process Biochem 39:1007CrossRefGoogle Scholar
  10. 10.
    Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) Biotechnol Lett 25:1531CrossRefGoogle Scholar
  11. 11.
    Habermann W, Pommer EH (1991) Appl Microbiol Biotechnol 35:128CrossRefGoogle Scholar
  12. 12.
    Liu H, Ramnarayanan R, Logan BE (2004) Environ Sci Technol 38:2281CrossRefGoogle Scholar
  13. 13.
    Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Environ Sci Technol 39:8077CrossRefGoogle Scholar
  14. 14.
    He Z, Minteer SD, Angenent LT (2005) Environ Sci Technol 39:5262CrossRefGoogle Scholar
  15. 15.
    Kim HJ, Park H, Hyun MS, Chang IS, Kim M, Kim BH (2002) Enzyme and Microbial Technol 30:145CrossRefGoogle Scholar
  16. 16.
    Kreysa G, Sell D (1990) Berichte der Bunsen-Gesellschaft Phy Chem 90:1042Google Scholar
  17. 17.
    Allen RM, Bennetto HP (1993) Applied Biochem and Biotechnol 39:27CrossRefGoogle Scholar
  18. 18.
    Davis F, Higson SPJ (2007) Biosen Bioelectron 22:1224CrossRefGoogle Scholar
  19. 19.
    Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biosens Bioelectro 21:2015Google Scholar
  20. 20.
    Lowy JG, Tender LM, Zeikus JG, Park DH, Lovely DR (2006) Biosens Bioelectron 21:2058CrossRefGoogle Scholar
  21. 21.
    Lovely DR (2006) Curr Opin Biotechnol 17:327CrossRefGoogle Scholar
  22. 22.
    Cheng S, Liu H, Logan BE (2006) Environ Sci Technol 40:364CrossRefGoogle Scholar
  23. 23.
    Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Electrochem Comm 7:1405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced MaterialsUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations