Journal of Applied Electrochemistry

, Volume 37, Issue 2, pp 233–239

A nucleation and growth study of gold nanowires and nanotubes in polymeric membranes

Article

Abstract

Through the use of a technique known as template synthesis, it has become possible to synthesize a variety of different materials in the form of nanowires or nanotubes. Dependent upon which type of template is used, either randomly or regularly dispersed nanowires or nanotubes with a wide variety of nanopore diameters and lengths can be created. In this experiment, gold nanowires and nanotubes have been synthesized with diameters of 30, 100, and 800 nm in polycarbonate membranes. The kinetics and characteristics of growth can be greatly altered, dependent upon what operational parameters are employed during deposition. This study looks at the different growth factors that need to be considered when employing the template synthesis approach. These factors include the final expected geometry, the distribution of nucleation sites, the grain size distribution, and the deposition rate.

Keywords

electroless deposition nanotube nanowire nucleation and growth template synthesis 

References

  1. 1.
    Wirtz M., Martin C.R. (2003) Adv. Mater. 15(5):455CrossRefGoogle Scholar
  2. 2.
    R.E. Gyurcsányi, T. Vigassy and E. Pretsch, Chem. Commun. (2003) 2560Google Scholar
  3. 3.
    Mitchell D.T., Lee S.B., Trofin L., Li N., Nevanen T.K., Söderlund H., Martin C.R. (2002) J. Am. Chem. Soc. 124:11864CrossRefGoogle Scholar
  4. 4.
    Kobayashi Y., Martin C.R. (1999) Anal. Chem. 71:3665CrossRefGoogle Scholar
  5. 5.
    Ugo P., Moretto L.M., Bellomi S., Menon V.P., Martin C.R. (1996) Anal. Chem. 68(23):4160CrossRefGoogle Scholar
  6. 6.
    Nishizawa M., Menon V.P., Martin C.R. (1995) Science 268:700CrossRefGoogle Scholar
  7. 7.
    Zoski C.G. (2002) Electroanalysis 14:1041CrossRefGoogle Scholar
  8. 8.
    Sun Y., Xia Y. (2004) Adv. Mater. 16(3):264CrossRefGoogle Scholar
  9. 9.
    Sun Y., Wiley B., Li Z.Y., Xia Y. (2004) J. Am. Chem. Soc. 126:9399CrossRefGoogle Scholar
  10. 10.
    Finot E., Bourillot R., Meunier-Prest R., Lacroute Y., Legay G., Cherkaoui-Malki M., Latruffe N., Siri O., Braunstein P., Dereux A. (2003) Ultramicroscopy 97:441CrossRefGoogle Scholar
  11. 11.
    Uematsu T., Fan L., Maruyama T., Ichikuni N., Shimazu S. (2002) J. Mol. Catal. A: Chem. 182–183:209CrossRefGoogle Scholar
  12. 12.
    Martin C.R. (1994) Science 266:1961CrossRefGoogle Scholar
  13. 13.
    Forrer P., Schlottig F., Siegenthaler H., Textor M. (2000) J. Appl. Electrochem. 30:533CrossRefGoogle Scholar
  14. 14.
    Li N., Yu S., Harrell C., Martin C.R. (2004) Anal. Chem. 76:2025CrossRefGoogle Scholar
  15. 15.
    Stein A. (2001) Microporous Mesoporous Mater 44–45:227CrossRefGoogle Scholar
  16. 16.
    Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H. (2003) Adv. Mater. 15(5):353CrossRefGoogle Scholar
  17. 17.
    Xu L., Tung L.D., Spinu L., Zakhidov A.A., Baughman R.H., Wiley J.B. (2003) Adv. Mater. 15(18):1562CrossRefGoogle Scholar
  18. 18.
    Martin C.R., Van Dyke L.S., Cai Z., Liang W. (1990) J. Am. Chem. Soc. 112:8976CrossRefGoogle Scholar
  19. 19.
    Van Dyke L.S., Martin C.R. (1990) Langmuir 6:1118CrossRefGoogle Scholar
  20. 20.
    Sapp S.A., Mitchell D.T., Martin C.R. (1999) Chem. Mater. 11:1183CrossRefGoogle Scholar
  21. 21.
    Lakshmi B.B., Dorhout P.K., Martin C.R. (1997) Chem. Mater. 9:857CrossRefGoogle Scholar
  22. 22.
    Miller S.A., Young V.Y., Martin C.R. (2001) J. Am. Chem. Soc. 123:12335CrossRefGoogle Scholar
  23. 23.
    Patrissi C.J., Martin C.R. (2001) J. Electrochem. Soc. 148:A1247CrossRefGoogle Scholar
  24. 24.
    Yamada K, Gasparac R, Martin C.R. (2004) J. Electrochem. Soc. 151(1):E14CrossRefGoogle Scholar
  25. 25.
    Watanabe T. (2004) Nano-Plating: Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure. Elsevier Ltd, OxfordGoogle Scholar
  26. 26.
    Menon V.P., Martin C.R. (1995) Anal. Chem. 67:1920CrossRefGoogle Scholar
  27. 27.
    Wirtz M., Parker M., Kobayashi W., Martin C.R. (2002) Chem. Eur. J. 8(16):3572CrossRefGoogle Scholar
  28. 28.
    Yu S., Li N., Warton J., Martin C.R. (2003) Nano Lett. 3(6):815CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations