Journal of Applied Electrochemistry

, Volume 37, Issue 1, pp 21–26

Feasibility of using PtFe alloys as cathodes in direct methanol fuel cells



Carbon-supported platinum–iron catalysts were fabricated and characterised by means of scanning electron microscopy, energy-dispersive X-ray system and X-ray diffraction. The catalysts were tested in electrochemical half cells for oxygen reduction using voltammetry and steady-state polarisation measurements and in direct methanol fuel cells. Use of PtFe/C cathodes, instead of a Pt/C cathode, partially suppressed methanol oxidation and led to higher net oxygen reduction currents in the presence of methanol. Consequently, an increase in power density up to 30% was achieved in direct methanol fuel cells with PtFe/C cathodes, compared to that with Pt/C cathode. The influence of alloy composition and operation conditions on the cell performance has been investigated.


direct methanol fuel cell Pt alloy catalysts oxygen reduction methanol crossover 


  1. 1.
    Lizcano-Valbuena W.H., Paganin V.A., Leite C.A.P., Galembeck F., Gonzalez E.R. (2003) Electrochim. Acta 48:3869CrossRefGoogle Scholar
  2. 2.
    Ren X., Zelenay P., Thomas S., Davey J., Gottesfeld S. (2000) J. Power Sources 86:111CrossRefGoogle Scholar
  3. 3.
    Yang H., Alonso-Vante N., Lamy C., Akins D.L. (2005) J. Electrochem. Soc. 152:A704CrossRefGoogle Scholar
  4. 4.
    Li W., Zhou W., Li H., Zhou Z., Zhou B., Sun G., Xin Q. (2004) Electrochim. Acta 49:1045CrossRefGoogle Scholar
  5. 5.
    Arico A.S., Srinivasan S., Antonucci V. (2001) Fuel Cells 1:133CrossRefGoogle Scholar
  6. 6.
    Bron M., Bogdanoff P., Fiechter S., Dorbant I., Hilgendorff M., Schulenburg H., Tributsch H. (2001) J. Electroanal. Chem. 500:510CrossRefGoogle Scholar
  7. 7.
    Reeve R.W., Christensen P.A., Dickinson A.J., Hamnett A., Scott K. (2000) Electrochim. Acta 45:4237CrossRefGoogle Scholar
  8. 8.
    Schmidt T.J., Paulus U.A., Gasteiger H.A., Alonso-Vante N., Behm R.J. (2000) J. Electrochem. Soc. 147:2620CrossRefGoogle Scholar
  9. 9.
    Convert P., Coutanceau C., Claguen F., Lamy C. (2001) J. Appl. Electrochem. 31:945CrossRefGoogle Scholar
  10. 10.
    Lefevre M., Dodelet J.P. (2003) Electrochim. Acta 48:2749CrossRefGoogle Scholar
  11. 11.
    Wei Z., Guo H., Tang Z. (1996) J. Power Sources 62:233CrossRefGoogle Scholar
  12. 12. (the reference codes are 06–0696 for Fe and 04–0802 for Pt).Google Scholar
  13. 13.
    Snyder R.L. (1999) in: Lifshin E. (ed.) X-ray Characterization of Materialss, Wiley-VCH, Weinheim, pp. 1–103Google Scholar
  14. 14.
    Cheng H., Scott K. (2003) J. Power Sources 123:137CrossRefGoogle Scholar
  15. 15.
    Hwang J.T., Chung J.S. (1993) Electrochim. Acta 38:2715CrossRefGoogle Scholar
  16. 16.
    Hirsch R., Delbecq F., Sautet P., Hafner J. (2003) J. Power Sources 217:354Google Scholar
  17. 17.
    Fortunelli A., Velasco A.M. (2002) J. Mol. Struct.: THEOCHEM 586:17CrossRefGoogle Scholar
  18. 18.
    Sun G.Q., Wang J.T., Savinell R.F. (1998) J. Appl. Electrochem. 28:1087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of Chemical Engineering & Advanced MaterialsUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations