Journal of Applied Electrochemistry

, Volume 37, Issue 1, pp 15–20

Electrochemical characterization of perovskite-based SOFC cathodes



The electrochemical performance of La0.58Sr0.4Co0.2Fe0.8O3-δ (L58SCF), La0.78Sr0.2Co0.2Fe0.8O3-δ (L78SCF) and composite La0.65Sr0.3MnO3-δ – 8 mol% Y2O3 stabilized ZrO2 (LSM-YSZ, 50:50 wt%) cathode electrodes interfaced to a double-layer electrolyte made of Ce0.8Gd0.2O2-δ (CGO) and YSZ was studied in the temperature range 600–850 °C using impedance spectroscopy and current-overpotential measurements. The experiments were carried out in a single chamber cell using a three electrode set-up with porous Pt films as auxiliary electrodes. The perovskite powders were synthesized using the spray-drying technique starting from nitrate precursors and were deposited on the solid electrolyte via screen-printing. Open circuit impedance measurements on as-prepared electrodes, i.e. before any polarization, and micropolarization measurements have shown that the L78SCF/CGO/YSZ electrode exhibits the lowest area specific polarization resistance RF (RF was approximately equal to 0.4 Ω cm2 at 800 °C and \(P_{\rm O_2}\) = 21 kPa) or, equivalently, the highest electrocatalytic activity according to the order: LSM/LSM-YSZ/CGO/YSZ<L58SCF/CGO/YSZ<L78SCF/CGO/YSZ. Current-overpotential data taken over an extended cathodic overpotential (ohmic-drop-free) range (0 to −500 mV) also indicated the aforementioned order of electrocatalytic activity. The Nyquist plots corresponded to at least two overlapping arcs or, equivalently, to at least two rate limiting processes. The relative contribution and degree of overlap of these arcs depended on electrode material, temperature and oxygen partial pressure, the low frequency arc being in general dominant at low temperatures and low oxygen partial pressures. Open circuit impedance experiments carried out at different oxygen partial pressures \(P_{\rm O_2}\) (0.01–100 kPa) revealed an exponential increase of the open-circuit area specific polarization conductance \(R_{\rm F}^{-1}\) with increasing \(P_{\rm O_2}\).


cathodes composite electrodes LSCF LSM-YSZ mixed conductors perovskites SOFC solid oxide fuel cells 


  1. 1.
    Jørgensen M.J., Mogensen M. (2001). J. Electrochem. Soc. 148:A433CrossRefGoogle Scholar
  2. 2.
    Kenjo T., Nishiya M. (1992). Solid State Ionics 57:295CrossRefGoogle Scholar
  3. 3.
    Dusastre V., Kilner J.A. (1999). Solid State Ionics 126:163CrossRefGoogle Scholar
  4. 4.
    Simner S.P., Bonnett J.F., Canfield N.L., Meinhardt K.D., Sprenkle V.L., Stevenson J.W. (2002). Electrochem. Solid State Lett. 5:A173CrossRefGoogle Scholar
  5. 5.
    Mai A., Haanappel V.A.C., Uhlenbruck S., Tietz F., Stöver D. (2005). Solid State Ionics 176:1341CrossRefGoogle Scholar
  6. 6.
    Teraoka Y., Zhang H.M., Okamoto K., Yamazoe N. (1988). Mater. Res. Bull. 23:51CrossRefGoogle Scholar
  7. 7.
    Stevenson J.W., Armstrong T.R., Carneim R.D., Pederson L.R., Weber W.J. (1996). J. Electrochem. Soc. 143:2722CrossRefGoogle Scholar
  8. 8.
    Fleig J. (2002). J. Power Sources 105:228CrossRefGoogle Scholar
  9. 9.
    Adler S.B., Lane J.A., Steele B.C.H. (1996). J. Electrochem. Soc. 143:3554CrossRefGoogle Scholar
  10. 10.
    Kilner J.A., De Souza R.A., Fullarton I.C. (1996). Solid State Ionics 86–88:703CrossRefGoogle Scholar
  11. 11.
    Co A.C., Xia S.J., Birss V.I. (2005). J. Electrochem. Soc. 152:A570CrossRefGoogle Scholar
  12. 12.
    Barbucci A., Bozzo R., Cerisola G., Costamagna P. (2002). Electrochim. Acta 47:2183CrossRefGoogle Scholar
  13. 13.
    Wang S., Jiang Y., Zhang Y., Yan J., Li W. (1998). Solid State Ionics 113–115:291CrossRefGoogle Scholar
  14. 14.
    Barbucci A., Carpanese P., Gerisola G., Viviani M. (2005). Solid State Ionics 176:1753CrossRefGoogle Scholar
  15. 15.
    Kim J.-D., Kim G.-D., Moon J.-W., Park Y.-I., Lee H.-W., Kobayashi K., Nagai M., Kim C.-E. (2001). Solid State Ionics 143:379CrossRefGoogle Scholar
  16. 16.
    Perry Murray E., Tsai T., Barnett S.A. (1998). Solid State Ionics 110:235CrossRefGoogle Scholar
  17. 17.
    de Florio D.Z., Muccillo R., Esposito V., Di Bartolomeo E., Traversa E. (2005). J. Electrochem. Soc. 152:A88CrossRefGoogle Scholar
  18. 18.
    Perry Murray E., Sever M.J., Barnett S.A. (2002). Solid State Ionics 148:27CrossRefGoogle Scholar
  19. 19.
    Tu H.Y., Takeda Y., Imanishi N., Yamamoto O. (1999). Solid State Ionics 117:277CrossRefGoogle Scholar
  20. 20.
    Esquirol A., Brandon N.P., Kilner J.A., Mogensen M. (2004). J. Electrochem. Soc. 151:A1847CrossRefGoogle Scholar
  21. 21.
    Grunbaum N., Dessemond L., Fouletier J., Prado F., Caneiro A. (2006). Solid State Ionics 177:907CrossRefGoogle Scholar
  22. 22.
    Tsoga A., Gupta A., Naoumidis A., Nikolopoulos P. (2000). Acta Mater. 48:4709CrossRefGoogle Scholar
  23. 23.
    Kountouros P., Förthmann R., Naoumidis A., Stochniol G., Syskakis E. (1995). Ionics 1:40CrossRefGoogle Scholar
  24. 24.
    A. Mai, PhD Thesis, Ruhr-Univ. Bochum, Schriften des Forschungszentrum Jülich, Energietechnik, Vol. 31 (2004).Google Scholar
  25. 25.
    Technical Note 101: Potential Error Correction (iR Compensation), Princeton Applied Research (PAR) (Oak Ridge, TN, 1986).Google Scholar
  26. 26.
    Waller D., Lane J.A., Kilner J.A., Steele B.C.H. (1996). Solid State Ionics 86–88:767CrossRefGoogle Scholar
  27. 27.
    Coffey G.W., Pederson L.R., Rieke P.C. (2003). J. Electrochem. Soc. 150:A1139CrossRefGoogle Scholar
  28. 28.
    Fleig J. (2005). Phys. Chem. Chem. Phys. 7:2027CrossRefGoogle Scholar
  29. 29.
    Fleig J., Maier J. (2004). J. European Ceramic Soc. 24:1343CrossRefGoogle Scholar
  30. 30.
    Ullmann H., Trofimenko N., Tietz F., Stöver D., Ahmad-Khanlou A. (2000). Solid State Ionics 138:79CrossRefGoogle Scholar
  31. 31.
    Mai A., Tietz F., Stöver D. (2004). Solid State Ionics 173:35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. Bebelis
    • 1
  • N. Kotsionopoulos
    • 1
  • A. Mai
    • 2
  • F. Tietz
    • 2
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute for Materials and Processes in Energy Systems (IWV-1)Forschungszentrum JülichJülichGermany

Personalised recommendations