Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses

  • Christopher A. Paddon
  • Mahito Atobe
  • Toshio Fuchigami
  • Ping He
  • Paul Watts
  • Stephen J. Haswell
  • Gareth J. Pritchard
  • Steven D. Bull
  • Frank Marken
Reviews in Applied Electrochemistry Number 61

Abstract

Electrosynthesis offers a powerful tool for the formation of anion and cation radical intermediates and for driving clean synthetic reactions without the need for additional chemical reagents. Recent advances in microfluidic reactor technologies triggered an opportunity for new microflow electrolysis reactions to be developed for novel and clean electrosynthetic processes. Naturally, two electrodes, anode and cathode, are required in all electrochemical processes and combining the two electrode processes into one “paired” reaction allows waste to be minimised. By decreasing the inter-electrode gap “paired” reactions may be further “coupled” by overlapping diffusion layers. The concept of “coupling” electrode processes is new and in some cases coupled processes in micro-flow cells are possible even in the absence of intentionally added electrolyte. The charged intermediates in the inter-electrode gap act as electrolyte and processes become “self-supported”. Hardly any examples of “coupled” paired electrochemical processes are known to date and both “paired” and “coupled” processes are reviewed here. Coupled electrode processes remain a challenge. In future “pairing” and “coupling” electrode processes into more complex reaction sequences will be the key to novel and clean flow-through microreactor processes and to novel chemistry.

Key words:

coupled processes electrolysis electrosythesis microfluidics microreactor paired reactions 

References

  1. 1.
    Weinberg N.L. (1975) Technique of Electroorganic Synthesis, Vol. 5. Wiley, New YorkGoogle Scholar
  2. 2.
    Fry A.J. (1989) Synthetic Organic Electrochemistry. Wiley, New YorkGoogle Scholar
  3. 3.
    Volke J., Liska F. (1994) Electrochemistry in Organic Synthesis. Springer, BerlinGoogle Scholar
  4. 4.
    Grimshaw J. (2000) Electrochemical Reactions and Mechanisms in Organic Chemistry. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Pletcher D., Walsh F.C. (1993) Industrial Electrochemistry. Chapman & Hall, London, pp. 298Google Scholar
  6. 6.
    Ann M. Thayer (2005) Chem. Engineer. News 83:43Google Scholar
  7. 7.
    Watts P., Haswell S.J. (2005) Chem. Rev. 34: 235CrossRefGoogle Scholar
  8. 8.
    Ehrfeldt W., Hessel V., Löwe H. (2000) Microreactors: New Technology for Modern Chemistry. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Doku G.N., Verboom W., Reinhoudt D.N., van den Berg A. (2005) Tetrahedron 61: 2733CrossRefGoogle Scholar
  10. 10.
    Yoshida J., Suga S., Nagaki A. (2005) J. Synth. Org. Chem. Jap. 63: 511Google Scholar
  11. 11.
    M.M. Baizer, in H. Lund and M.M. Baizer (Eds), ‚Organic Electrochemistry’, (Marcel Dekker, New York, 1991) p. 1421Google Scholar
  12. 12.
    Paddon C.A., Pritchard G.J., Thiemann T., Marken F. (2002) Electrochem. Commun. 4: 825CrossRefGoogle Scholar
  13. 13.
    Baizer M.M., Hallcher R.C. (1976) J. Electrochem. Soc. 123: 809CrossRefGoogle Scholar
  14. 14.
    Moinet C. (1994) J. Physique IV 4(C1): 175Google Scholar
  15. 15.
    Chernyshev E.A., Bukhtiarov A.V., Kabanov B.K., Tomilov A.P., Rodnikov I.A., Maier N.A., Shirokii V.L., Oldekop Y.A. (1982) Soviet Electrochem. 18: 211Google Scholar
  16. 16.
    Park K., Pintauro P.N., Baizer M.M., Nobe K. (1985) J. Electrochem. Soc. 132: 1850CrossRefGoogle Scholar
  17. 17.
    D.E. Danly and C.J.H. King, in H. Lund and M.M. Baizer (Eds), ‚Organic Electrochemistry’, (Marcel Dekker, New York, 1991) p. 1317Google Scholar
  18. 18.
    Hamann C.H., Hamnett A., Vielstich W. (1998) Electrochemistry. Wiley, New YorkGoogle Scholar
  19. 19.
    Baizer M.M., Danly D.E. (1980) Chemtech. 10: 161Google Scholar
  20. 20.
    See for example V. Hessel and H. Löwe, Chem. Ing. Tech., 76 (2004) 535Google Scholar
  21. 21.
    Bard A.J. (1994) Integrated Chemical Systems. Wiley, New York, pp.127Google Scholar
  22. 22.
    See for example E. Steckhan, T. Arns, W.R. Heineman, G. Hilt, D. Hoormann, J. Jorissen, L. Kroner, B. Lewall and H. Putter, Chemosphere 43 (2001) 63Google Scholar
  23. 23.
    Compton R.G., Foord J.S., Marken F. (2003) Electroanalysis. 15: 1349CrossRefGoogle Scholar
  24. 24.
    Hayfield P.C.S. (2002) Development of a New Material – Monolithic Ti4O7 Ebonex Ceramic. Royal Society of Chemistry, LondonGoogle Scholar
  25. 25.
    N.L. Weinberg, U.S. Patent 4,478,694Google Scholar
  26. 26.
    Shono T., Kise N., Suzumoto T., Morimoto T. (1986) J. Am. Chem. Soc. 108:4676CrossRefGoogle Scholar
  27. 27.
    Horii D., Atobe M., Fuchigami T., Marken F. (2005) Electrochem. Commun. 7: 35CrossRefGoogle Scholar
  28. 28.
    R. Horcajada, M. Okajima, S. Suga and J. Yoshida, Chem. Commun. (2005) 1303Google Scholar
  29. 29.
    Belmont C., Girault H.H. (1994) J. Appl. Electrochem. 24:719CrossRefGoogle Scholar
  30. 30.
    Ferringo R., Josserand J., Brevet P.F., Girault H.H. (1998) Electrochim. Acta. 44: 587CrossRefGoogle Scholar
  31. 31.
    Aoki K., Morita M., Niwa O., Tabei H. (1988) J. Electroanal. Chem. 256: 269CrossRefGoogle Scholar
  32. 32.
    Fosser B., Amatae C., Bartelt J., Wightman R.M. (1991) Anal. Chem. 63: 1403CrossRefGoogle Scholar
  33. 33.
    Bard A.J., Faulkner L.R. (2001) Electrochemical Methods. Wiley, New York, pp. 29Google Scholar
  34. 34.
    Brett C.M.A., Brett A.M.O. (1993) Electrochemistry, Principles, Methods, and Applications. Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Marken F., Akkermans R.P., Compton R.G. (1996) J. Electroanal. Chem. 415: 55CrossRefGoogle Scholar
  36. 36.
    Sur U.K., Marken F., Rees N., Coles B.A., Compton R.G., Seager R. (2004) J. Electroanal. Chem. 573: 175CrossRefGoogle Scholar
  37. 37.
    Rieger P.H. (1994) Electrochemistry. Chapman & Hall, LondonGoogle Scholar
  38. 38.
    H. Pütter and H. Hannebaum, DE 19, (13-11-1997), 618, 854Google Scholar
  39. 39.
    (a) E. Steckhan, T. Arns, W.R. Heineman, G. Hilt, D. Hoormann, J. Jorissen, L. Kroner, B. Lewall, H. Pütter, Chemosphere 43 (2001) 63. (b) http://www.electrochem.cwru.edu/ed/encycl/art-o01-org-ind.htm (N.L. Weinberg, ‚Industrial Organic Electrosynthesis’, 2002, accessed 9th January 2006)
  40. 40.
    Park K., Pintauro P.N., Baizer M.M., Nobe K. (1985) J. Electrochem. Soc. 132: 1850CrossRefGoogle Scholar
  41. 41.
    Yu J.C., Baizer M.M., Nobe K. (1988) J. Electrochem. Soc. 135: 1400CrossRefGoogle Scholar
  42. 42.
    Jalbout A.F., Zhang S.H. (2002) Acta. Chim. Slovencia 49: 917Google Scholar
  43. 43.
    Ishifune M., Yamashita H., Matsuda M., Ishida H., Yamashita N., Kera Y., Kashimura S., Masuda H., Murase H. (2001) Electrochim. Acta 46: 3259CrossRefGoogle Scholar
  44. 44.
    Belmont C., Girault H.H. (1995) Electrochim. Acta. 40: 2505CrossRefGoogle Scholar
  45. 45.
    Kim S., Uchiyama R., Kitano Y., Tada M., Chiba K. (2001) J. Electroanal. Chem. 507: 152CrossRefGoogle Scholar
  46. 46.
    Hu K., Niyazymbetau M.E., Evans D.H. (1995) Tetrahed. Lett. 36: 7027CrossRefGoogle Scholar
  47. 47.
    Ito S., Katayama R., Kunai A., Sasaki K. (1989) Tetrahed. Lett. 30: 205CrossRefGoogle Scholar
  48. 48.
    Hilt G. (2003) Angew. Chem. Int. Ed. Engl. 42: 1720CrossRefGoogle Scholar
  49. 49.
    Batanero B., Barba F. (2002) J. Org. Chem. 67: 2369CrossRefGoogle Scholar
  50. 50.
    Batanero B., Barba F. (2004) J. Org. Chem. 69: 2423CrossRefGoogle Scholar
  51. 51.
    Li W., Nonaka T., Chou T.C. (1999) Electrochemistry 67: 4Google Scholar
  52. 52.
    Li W., Nonaka T. (1999) J. Electrochem. Soc. 146: 592CrossRefGoogle Scholar
  53. 53.
    Li W., Nonaka T. (1999) Electrochim. Acta 44: 2605CrossRefGoogle Scholar
  54. 54.
    Shen Y., Atobe M., Li W., Nonaka T. (2003) Electrochim. Acta 48: 1041CrossRefGoogle Scholar
  55. 55.
    Chou C.F., Chou T.C. (2003) J. Appl. Electrochem. 33: 741CrossRefGoogle Scholar
  56. 56.
    Udupa H.V.K., Krishnan V., Muthukumaran A. (1978) J. Electrochem. Soc. 125: C169CrossRefGoogle Scholar
  57. 57.
    Kass N.C., Limborg F., Glens K. (1952) Acta Chem. Scand. 6: 531CrossRefGoogle Scholar
  58. 58.
    He P., Watts P., Marken F., Haswell S.J. (2005) Electrochem. Commun. 7: 918CrossRefGoogle Scholar
  59. 59.
    Amatore C., Brown A.R. (1996) J. Am. Chem. Soc. 118: 1482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Christopher A. Paddon
    • 1
  • Mahito Atobe
    • 2
  • Toshio Fuchigami
    • 2
  • Ping He
    • 3
  • Paul Watts
    • 3
  • Stephen J. Haswell
    • 3
  • Gareth J. Pritchard
    • 4
  • Steven D. Bull
    • 5
  • Frank Marken
    • 5
  1. 1.Physical and Theoretical Chemistry LaboratoryOxford UniversityOxfordUK
  2. 2.Department of Electronic ChemistryTokyo Institute of TechnologyMidori-kuJapan
  3. 3.Department of ChemistryUniversity of HullHullUK
  4. 4.Department of ChemistryLoughborough UniversityLoughboroughUK
  5. 5.Department of ChemistryUniversity of BathClaverton DownUK

Personalised recommendations