Journal of Applied Electrochemistry

, Volume 36, Issue 5, pp 507–522 | Cite as

Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis

  • Kunchan Lee
  • Jiujun Zhang
  • Haijiang Wang
  • David P. Wilkinson
Reviews in Applied Electrochemistry Number 60

Abstract

This paper reviews the literature on the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for proton exchange membrane (PEM) fuel cell catalyst loading reduction through the improvement of catalyst utilization and activity, especially focusing on cathode nano-electrocatalyst preparation methods. The features of each synthetic method were also discussed based on the morphology of the synthesized catalysts. It is clear that synthesis methods play an important role in catalyst morphology, Pt utilization and catalytic activity. Though some remarkable progress has been made in nanotube- and nanofiber-supported Pt catalyst preparation techniques, the real breakthroughs have not yet been made in terms of cost-effectiveness, catalytic activity, durability and chemical/electrochemical stability. In order to make such electrocatalysts commercially feasible, cost-effective and innovative, catalyst synthesis methods are needed for Pt loading reduction and performance optimization.

Keywords

carbon nanofiber carbon nanotube catalyst supports electrocatalyst oxygen electroreduction PEM fuel cells synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We wish to thank the Institute for Fuel Cell Innovation, National Research Council Canada (NRC_IFCI) for its financial support. Discussions with Dr. Zhong-Sheng Liu and Dr. Dave Ghosh are deeply appreciated.

References

  1. 1.
    Larminie J., Dicks A., (2000). Fuel Cell Systems Explained. John Wiley & Sons, New York, pp. 61–108Google Scholar
  2. 2.
    Arita M., (2002) Fuel Cells 2: 10CrossRefGoogle Scholar
  3. 3.
    DOE FY 2002&2004 Annual Progress ReportsGoogle Scholar
  4. 4.
    L. Zhang, J. Zhang, D. Wilkinson and H. Wang, J. Power Sources, DOI: 10.1016/j.jpowsour.2005.05.069Google Scholar
  5. 5.
    Sato N., (2003) Oyo Buturi 72: 857Google Scholar
  6. 6.
    Gasteiger H.A., Kocha S.S., Sompalli B., Wagner F.T., (2005) Appl. Catal. B: Environ. 56: 9CrossRefGoogle Scholar
  7. 7.
    Brandon N.P., Skinner S., Steele B.C.H., (2003) Annu. Rev. Mater. Res. 33: 183CrossRefGoogle Scholar
  8. 8.
    DOE FY 2000 Annual Progress ReportGoogle Scholar
  9. 9.
    C. Jaffray and G. Hards, in W. Vielstich and H.A. Gasteiger, Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3, Chapter 41 (John Wiley & Sons, New York, 2003), pp. 509–513Google Scholar
  10. 10.
    Kinoshita K., (1992) Electrochemical Oxygen Technology. John Wiley & Sons, New York, pp.19Google Scholar
  11. 11.
    Kordesch K., Simader G., (1996) Fuel Cells and their Applications. VCH, New York, pp. 3–93Google Scholar
  12. 12.
    Bernardi D.M., Verbrugge M.W., (1992). J. Electrochem. Soc. 139: 2477CrossRefGoogle Scholar
  13. 13.
    Toda T., Igarashi H., Uchiada H., Watanabe M., (1999) J. Electrochem. Soc. 146: 3750CrossRefGoogle Scholar
  14. 14.
    Ralph T.R., Hogarth M.P., (2002) Platinum Metals Rev. 46: 3Google Scholar
  15. 15.
    D. Thompsett, in W. Vielstich and H.A. Gasteiger (eds), Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3, Chapter 37 (John Wiley & Sons, New York, 2003), pp. 467–480Google Scholar
  16. 16.
    Savadogo O., Beck P., (1996) J. Electrochem. Soc. 143: 3842CrossRefGoogle Scholar
  17. 17.
    Shim J., Lee C.R., Lee H.K., Lee J.S., Cairns E.J., (2001) J. Power Sources 102: 172CrossRefGoogle Scholar
  18. 18.
    Ota K., Ishihara A., Mitsushima S., Lee K., Suzuki Y., Horibe N., Nakagawa T., Kamiya N., (2005) J. New. Mat. Electrochem. Systems 8: 25Google Scholar
  19. 19.
    Mukerjee S., Srinivasan S., (1993) J. Electroanal. Chem. 357: 201CrossRefGoogle Scholar
  20. 20.
    Tamizhman G., Capuano G.A., (1994) J. Electrochem. Soc. 141: 968CrossRefGoogle Scholar
  21. 21.
    T. Tada, in W. Vielstich and H.A. Gasteiger (eds), Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3, Chapter 38 (John Wiley & Sons, New York, 2003), pp. 481–488Google Scholar
  22. 22.
    T.V. Hughes and C.R. Chambers, US Patent 405,480 (1889)Google Scholar
  23. 23.
    Iijima S., (1991) Nature 354: 56CrossRefGoogle Scholar
  24. 24.
    Dai H., (2002) Surface Sci. 500: 218CrossRefGoogle Scholar
  25. 25.
    Li W., Liang C., Zhou W., Qiu J., Zhou Z., Sun G., Xin Q., (2003) J. Phys. Chem. B 107: 6292CrossRefGoogle Scholar
  26. 26.
    Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robet J., Xu C., Lee Y.H., Kim S.G., Rinzler A., Colbert D.T., Scuseria G., Tomanek D., Fischer J.E., Smalley R., (1996) Science 273: 483CrossRefGoogle Scholar
  27. 27.
    Serp P., Corrias M., Kalck P., (2003) Appl. Catal. A: Gen. 253: 337CrossRefGoogle Scholar
  28. 28.
    Thompson S.D., Jordan L.R., Forsyth M., (2001) Electrochim. Acta 46: 1657CrossRefGoogle Scholar
  29. 29.
    Matsumoto T., Komatsu T., Nakano H., Arai K., Nagashima Y., Yoo E., Yamazaki T., Kijima M., Shimizu H., Takasawa Y., Nakamura J., (2004) Catal. Today 90: 277CrossRefGoogle Scholar
  30. 30.
    Rodriguez N.M., (1993) J. Mater. Res. 8: 3233CrossRefGoogle Scholar
  31. 31.
    Raffaelle R.P., Landi B.J., Harris J.D., Bailey S.G., Hepp A.F., (2005) Mater. Sci. Eng. B 116: 233CrossRefGoogle Scholar
  32. 32.
    Endo M., Kim Y.A., Hayasi T., Nishimura K., Matusita T., Miyashita K., Dresselhaus M.S., (2001) Carbon 39: 1287CrossRefGoogle Scholar
  33. 33.
    Inagaki M., Kaneko K., Nishizawa T., (2004) Carbon 42: 1401CrossRefGoogle Scholar
  34. 34.
    Jong K.P.D., Geus J.W., (2000) Catal. Rev.-Sci. Eng. 42: 481CrossRefGoogle Scholar
  35. 35.
    Iijima S., (2002) Physica B 323: 1CrossRefGoogle Scholar
  36. 36.
    Li W., Liang C., Zhou W., Qiu J., Li H., Sun G., Xin Q., (2004) Carbon 42: 423CrossRefGoogle Scholar
  37. 37.
    Rajalakshmi N., Ryu H., Shaijumon M.M., Ramaprabhu S., (2005) J. Power Sources 140: 250CrossRefGoogle Scholar
  38. 38.
    Xing Y., (2004) J. Phys. Chem. B 108: 19255CrossRefGoogle Scholar
  39. 39.
    Liu Z., Lin X., Lee J.Y., Zhang W., Han M., Gan L.M., (2002) Langmuir 18: 4054CrossRefGoogle Scholar
  40. 40.
    Yu R., Chen L., Liu Q., Tan K.L., Ng S.C., Chan H.S.O., Xiu G.Q., Hor T.S.A., (1998) Chem. Mater. 10: 718CrossRefGoogle Scholar
  41. 41.
    Hirua H., Ebbesen T.W., Tanigaki K., (1995) Adv. Mater. 7: 275CrossRefGoogle Scholar
  42. 42.
    Ebbesen T.W., Hirua H., Bisher M.E., Treacy M.M.J., Shreeve-Keyer J.L., Haushalter R.C., (1996) Adv. Mater. 8 : 155CrossRefGoogle Scholar
  43. 43.
    Sun X., Li R., Villers D., Dodelet J.P., Desilets S., (2003) Chem. Phys. Lett. 379: 99CrossRefGoogle Scholar
  44. 44.
    Kinoshita K., (1990) J. Electrochem. Soc. 137:845CrossRefGoogle Scholar
  45. 45.
    Liu Z., Gan L.M., Hong L., Chen W., Lee J.Y., (2005) J. Power Sources 139: 73CrossRefGoogle Scholar
  46. 46.
    W.X. Chen, J.Y. Lee and Z. Liu, Chem. Commun. (2002) 2588Google Scholar
  47. 47.
    Yang B., Lu Q., Wang Y., Zhuang L., Lu J., Liu P., (2003) Chem. Mater. 15: 3552CrossRefGoogle Scholar
  48. 48.
    Liu Z., Lee J.Y., Chen W., Han M., Gan L.M., (2004) Langmuir 20:181CrossRefGoogle Scholar
  49. 49.
    Chen W., Zhao J., Lee J.Y., Liu Z., (2005) Mater. Chem. Phys. 91: 124CrossRefGoogle Scholar
  50. 50.
    X. Li, W.X. Chen, J. Zhao, W. Xing and Z. D. Xu, Carbon, in pressGoogle Scholar
  51. 51.
    Yang J., Deivaraj T.C., Too H.P., Lee J.Y., (2004) Langmuir 20: 4241CrossRefGoogle Scholar
  52. 52.
    Thompson S.D., Jordan L.R., Shukla A.K., Forsyth M., (2001) J. Electroanal. Chem. 515: 61CrossRefGoogle Scholar
  53. 53.
    Kim H., Subramanian N.P., Popov B.N., (2004). J. Power Sources 138: 14CrossRefGoogle Scholar
  54. 54.
    Antoine O., Durand R., (2001) J. Electrochem. Solid-State Lett. 4: A55CrossRefGoogle Scholar
  55. 55.
    Taylor E.J., Anderson E.B., Vilambi N.R.K., (1992) J. Electrochem. Soc. 139: L45CrossRefGoogle Scholar
  56. 56.
    N.R.K. Vilambi, E.B. Andersion and E. J. Taylor, US Patent 5,084,144 (1992)Google Scholar
  57. 57.
    Lee K., Ishihara A., Mitsushima S., Kamiya N., Ota K.-I., (2004) J. Electrochem. Soc. 151: A639CrossRefGoogle Scholar
  58. 58.
    Wang C., Waje M., Wang X., Tang J.M., Haddon R.C., Yan Y., (2004) Nano Lett. 4: 345CrossRefGoogle Scholar
  59. 59.
    He Z., Chen J., Liu D., Zhou H., Kuang Y., (2004) Diamond Relat. Mater. 13: 1764CrossRefGoogle Scholar
  60. 60.
    Guo D.J., Li H.L., (2004) J. Electroanal. Chem. 573: 197CrossRefGoogle Scholar
  61. 61.
    Mukerjee S., Srinivasan S., Appleby A.H., (1993) Electrochim. Acta 38: 1661CrossRefGoogle Scholar
  62. 62.
    Hirano S., Kim J., Srinivasan S., (1997) Electrochim. Acta 42: 1587CrossRefGoogle Scholar
  63. 63.
    Chen C.C., Chen C.F., Hsu C.H., Li I.H., (2005) Diamond Relat. Mater. 14: 770CrossRefGoogle Scholar
  64. 64.
    Sun C.L., Chen L.C., Su M.C., Hong L.S., Chyan O., Hsu C.Y., Chen K.H., Chang T.F., Chang L., (2005) Chem. Mater. 17: 3749CrossRefGoogle Scholar
  65. 65.
    S.D. Oh, B.K. So, S.H. Choi, A. Gopalan, K.P. Lee, K.R. Yoon and I.S. Choi, Mater. Lett. 59 (2005) 1121Google Scholar
  66. 66.
    Lee C.L., Ju Y.C., Chou P.T., Huang Y.C., Kuo L.C., Oung J.C., (2005) Electrochem. Commun. 7: 453CrossRefGoogle Scholar
  67. 67.
    Lee C.L., Wan C.C., Wang Y.Y., (2001) Adv. Funct. Mater. 11: 344CrossRefGoogle Scholar
  68. 68.
    Yoshitake T., Shimakawa Y., Kuroshima S., Kimura H., Ichihashi T., Kudo Y., Kasuya D., Takahashi K., Kokai F., Yudasaka M., Iijima S., (2002) Physica B 323: 124CrossRefGoogle Scholar
  69. 69.
  70. 70.
    Bessel C.A., Laubernds K., Rodriguez N.M., Baker R.T.K., (2001) J. Phys. Chem. B 105: 1115CrossRefGoogle Scholar
  71. 71.
    Zhu Y.A., Sui Zh.J., Zhao T.J., Dai Y.Ch., Cheng Zh.M., Yuan W.K., (2005) Carbon 43: 1694CrossRefGoogle Scholar
  72. 72.
    Ismagilov Z.R., Kerzhentsev M.A., Shikina N.V., Lisitsyn A.S., Okhlopkova L.B., Barnakov Ch.N., Sakashita M., Iijima T., Tadokoro K., (2005) Catalysis Today 102–103: 58CrossRefGoogle Scholar
  73. 73.
    Koyama T., (1972) Carbon 10: 757CrossRefGoogle Scholar
  74. 74.
    K. Sasaki, K. Shinya, S. Tanaka, A. Furukawa, K. Ando, T. Kuroki, H. Kusaba and Y. Teraoka, Nanostructuring of PEFC electrode catalysts using carbon nanofibers, Abstract of the 206th Electrochemical Society meeting, Honolulu, 3–8 October (2004) Abstract # 1912Google Scholar
  75. 75.
    K. Sasaki, K. Shinya, S. Tanaka, A. Furukawa, K. Ando, T. Kuroki, H. Kusaba and Y. Teraoka, Nanostructuring of cathode catalysts for polymer electrolyte fuel cells, Proceeding of the 11th FCDIC Fuel Cell Symposium, Tokyo, Japan, 18–19 May (2003) pp. 239–242Google Scholar
  76. 76.
    K. Shinya, K. Sasaki, H. Kusaba and Y. Teraoka, PEFC electrode catalysts supported on carbon nanofibers: nanostructure and catalytic properties, Proceeding of the 45th Battery Symposium in Japan, Kyoto, Japan, 27–29 November (2004), pp. 46–46Google Scholar
  77. 77.
    A. Asami, S. Iinou, A. Ishihara, S. Mitsushima, N. Kamiya and K.I. Ota, Application of Pt/VGCF as cathode for PEFC, Proceeding of the 24th Annual Meeting of Hydrogen Energy Systems Society of Japan, Saitama, Japan, 10–11 December (2004) pp. 16–19Google Scholar
  78. 78.
    Zhang L., Cheng B., Samulski E.T., (2004) Chem. Phys. Lett. 398: 505CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Kunchan Lee
    • 1
  • Jiujun Zhang
    • 1
  • Haijiang Wang
    • 1
  • David P. Wilkinson
    • 1
    • 2
  1. 1.Institute for Fuel Cell InnovationNational Research Council CanadaVancouverCanada
  2. 2.Department of Chemical and Biological EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations