Journal of Applied Electrochemistry

, Volume 35, Issue 11, pp 1087–1093 | Cite as

Electrochemical incineration of oxalic acid: Reactivity and engineering parameters



Mass transfer measurements were carried out to test a disk-shaped parallel-plate electrochemical cell, based on a new design. The impinging-jet-cell concept, confined between parallel plates, was adapted to a configuration with one central inlet and several peripheral exit sections, leading to more effective hydrodynamics within the cell. Measurements of mass transfer coefficient were performed using the limiting diffusion current technique based on ferro-cyanide ion oxidation, and overall mass transfer coefficients were correlated to Reynolds numbers ranging from 30 to 200.

 A comparison with literature on similar devices showed higher mass transfer coefficients can be obtained in the cell described in the present work. From the mass transfer standpoint, this type of cell could be a valuable tool in electrochemical wastewater treatment applications.

 The electrochemical oxidation of oxalic acid was tested at different anode materials (Pb/PbO2, boron-doped diamond, Ti/Pt and Ti/IrO2–Ta2O5), showing that the new cell design enables limitations usually encountered with conventional batch cells to be overcome. However, the nature of the anode material remains an important parameter for the elimination of organic substrates.

Key words:

anode material electrochemical incineration flow cell mass transfer coefficient oxalic acid 

List of symbols


electrode surface area (m2)


bulk species concentration (mol m−3)


diffusion coefficient (m2 s−1)


diameter of the nozzle (m)


faradic constant (96487 C mol−1)


nozzle height (m)


electrolysis limiting current (A)


mass transfer coefficient (m s−1)


radial coordinate measured from the stagnation point (m)


radius of the disk electrode (cm)


Reynolds number


nozzle Reynolds number


radial Reynolds number


inter-electrode distance (m)


Schmidt number


Sherwood number


nozzle Sherwood number


radial Sherwood number


electrons exchanged in electrode reaction


mean fluid velocity in cell or channel (m s−1)


volumetric flow rate (m3 s−1)

Greek letters


fluid density (kg m−3)


kinematics viscosity of the fluid (m2 s−1)


dynamic viscosity (kg s−1 m−1)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oduoza C.F., and Wragg A.A. (2000) J. Appl. Electrochem. 30: 1439CrossRefGoogle Scholar
  2. 2.
    W.N. Taama, R.E. Plimley and K. Scott, ‘Mass transfer rates in a DEM electrochemical cell’, proceedings of the 4th European Symposium on Electrochemical Engineering (CHISA), Institute of Chemical Technology, Prague (1996) pp. 289–295Google Scholar
  3. 3.
    Goodridge F., Mamoor G.M., Plimley R.E. (1985) IChemE Symp. Ser. 98: 61Google Scholar
  4. 4.
    Wragg A.A., Leontaritis A., (1997) Chem. Eng. J. 66: 1CrossRefGoogle Scholar
  5. 5.
    Wragg A.A., Tagg D.J., Patrick M.A., (1980) J. Appl. Electrochem. 10: 43CrossRefGoogle Scholar
  6. 6.
    Bengoa C., Montillet A., Legentilhomme P., Legrand J., (1997) J. Appl. Electrochem. 27: 1313CrossRefGoogle Scholar
  7. 7.
    Oduoza C.F., Wragg A.A. (2002) Chem. Eng. J. 85: 119CrossRefGoogle Scholar
  8. 8.
    Mustoe L.H., Wragg A.A., (1981) J. Chem Tech. Biotechnol 31: 317CrossRefGoogle Scholar
  9. 9.
    Mustoe L.H., Wragg A.A., (1983) J. Appl. Electrochem. 13: 507CrossRefGoogle Scholar
  10. 10.
    Djati A., Brahimi M., Legrand J., Saidani B., (2001) J. Appl. Electrochem. 31: 833CrossRefGoogle Scholar
  11. 11.
    Oduoza C.F., Wragg A.A., (1997) Chem. Eng. J. 68: 145CrossRefGoogle Scholar
  12. 12.
    12. Wragg A.A., Leontaritis A., (1991) in Electrochemical Cell Design and Optimization. Dechema Monographs 123: 345Google Scholar
  13. 13.
    Polcaro A.M., Vacca A., Palmas S. Mascia M., (2003) J. Appl. Electrochem. 33: 885CrossRefGoogle Scholar
  14. 14.
    Jüttner K., Galla U., Schmieder H., (2000) Electrochim. Acta. 45: 2575CrossRefGoogle Scholar
  15. 15.
    Yapici S., Kuslu S., Ozmetin C., Ersahan H., Pekdemir T., (1999) J. Appl. Electrochem., 29: 185CrossRefGoogle Scholar
  16. 16.
    Chin D.-T., Tsang C.-H., (1978) J. Electrochem. Soc. 125: 1461CrossRefGoogle Scholar
  17. 17.
    H. Martin, in J.P. Hartnett and T.F. Irvine, Jr. (Eds), `Advances in Heat Transfer', Vol. 13, (Academic Press, New York, 1977), pp. 1–60Google Scholar
  18. 18.
    18. Incropera F.P., de Witt D.P., (1990) Fundamentals of Heat and Mass Transfer. 3rd ed., John Wiley & Sons, New York, pp. 431Google Scholar
  19. 19.
    Gandini D., Mahè E., Michaud P.A., Haenni W., Perret A., Comninellis Ch., (2000) J. Appl. Electrochem. 30: 1345CrossRefGoogle Scholar
  20. 20.
    Comninellis Ch., Plattner E., (1988) Chimia 42: 250Google Scholar
  21. 21.
    Comninellis Ch., Pulgarin C., (1991) J. Appl. Electrochem. 21: 703CrossRefGoogle Scholar
  22. 22.
    Comninellis Ch., (1992) Gas Wasser, Abwasser. 11: 792Google Scholar
  23. 23.
    Comninellis Ch., Pulgarin C., (1993) J. Appl. Electrochem. 23: 108CrossRefGoogle Scholar
  24. 24.
    Comninellis Ch., Plattner E., Seignez C., Pulgarin C., Péringer P., (1992) Swiss Chem 14: 25Google Scholar
  25. 25.
    Pulgarin C., Alder N., Péringer P., Comninellis Ch., (1994) Water Res. 28: 887CrossRefGoogle Scholar
  26. 26.
    Polcaro A.M., Mascia M., Palmas S., Vacca A., (2002) Ind. Eng. Chem Res. 41: 2874CrossRefGoogle Scholar
  27. 27.
    Ch. Comninellis, (1994) Electrochim. Acta. 39: 1857CrossRefGoogle Scholar
  28. 28.
    Polcaro A.M., Palmas S., Renoldi F., Mascia M., (1999) J. Appl. Electrochem. 29: 147CrossRefGoogle Scholar
  29. 29.
    Belhadj Tahar N., Savall A., (1998) J. Electrochem. Soc. 145: 3427CrossRefGoogle Scholar
  30. 30.
    Feng J., Houk L.L., Johnson D.C., Lowery S.N., Carey J.J., (1995) J. Electrochem. Soc. 142: 3626CrossRefGoogle Scholar
  31. 31.
    Bonfatti F., Ferro S., Lavezzo F., Malacarne M., Lodi G., De Battisti A., (1999) J. Electrochem. Soc., 146: 2175CrossRefGoogle Scholar
  32. 32.
    Foty G., Gandini D., Comninellis Ch., (1997) Current Topics in Electrochemistry 5 : 71Google Scholar
  33. 33.
    Comninellis Ch., De Battisti A., (1996) J. Chim. Phys. 93: 673Google Scholar
  34. 34.
    Fisher V., Gandini D., Laufer S., Blank E., Comninellis Ch., (1998) Electrochim. Acta. 44: 521CrossRefGoogle Scholar
  35. 35.
    Fryda M., Herrmann D., Schafer L., Klages C.-P., Perrer A., Haenni W., Comninellis Ch., Gandini D., (1999) New Diamond and Frontier Carbon Technol. 9: 229Google Scholar
  36. 36.
    Tagg D.J., Patrick M.A., Wragg A.A., (1979) Trans. I. Chem. Eng. 57: 176Google Scholar
  37. 37.
    Chen Y.M., Lee W.T., Wu S.J., (1998) Heat Mass Transfer 34: 195CrossRefGoogle Scholar
  38. 38.
    Chia C.J., Giralt F., Trass O., (1977) Ind. Eng. Chem. Fundam. 16: 28CrossRefGoogle Scholar
  39. 39.
    Giralt F., Trass O., (1975) Can. J. Chem. Eng. 53: 505CrossRefGoogle Scholar
  40. 40.
    Scholtz M.T., Trass O., (1970) AIChE J. 16: 82CrossRefGoogle Scholar
  41. 41.
    W. Fresenius, Water Analysis. Ed. Springer-Verlag, Berlin Heidelberg Germany, (1998) p. 477Google Scholar
  42. 42.
    Ferro S., (2002) J. Mater. Chem., 12: 2843CrossRefGoogle Scholar
  43. 43.
    Perret A., Skinner N., Comninellis Ch., Gandini D., (1997) Electrochem. Soc. Proc. 32: 275Google Scholar
  44. 44.
    Michaud P.A., PhD Thesis No. 2595 (2002) EPFL-SwitzerlandGoogle Scholar
  45. 45.
    Zin G.K., U.S Patent 3,196,832 (1965)Google Scholar
  46. 46.
    Martinez-Huitle C.A., Ferro S., De Battisti A., (2004) Electrochim. Acta 49: 4027CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

    • 1
  • S. FERRO
    • 1
    • 1
  1. 1.Department of ChemistryUniversity of FerraraFerraraItaly

Personalised recommendations