Advertisement

Journal of Applied Electrochemistry

, Volume 35, Issue 9, pp 897–902 | Cite as

Evaluation of electrolysis for oxidative deodorization of hog manure

  • Dorin Bejan
  • Farida Sagitova
  • Nigel J. BunceEmail author
Article

Abstract

Electrolysis was investigated as a method for the amelioration of odor from the supernatant phase of centrifuged liquid hog manure. Methods examined included the use of dual anodes to provide both oxidizing intermediates from water electrolysis and a sacrificial input of iron into solution to remove organic constituents of hog manure by coagulation. The most promising approaches used a “dimensionally stable anode” composed of tin dioxide coated on a base of titanium, and the newly developed material boron-doped diamond, which has an exceptional stability to both oxidizing and reducing electrolytic conditions. These anodes promote the formation of hydroxyl radicals which initiate oxidation of organic constituents of the manure.

Keywords

boron-doped diamond anode electrolysis liquid hog manure titanium–tin dioxide anode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rajeshwar, K., Ibanez, J.G. 1997Environmental ElectrochemistryAcademic PressSan Diego, CA Chapter 2Google Scholar
  2. 2.
    Cossu, R., Polcaro, A.M., Lavafnola, M.C., Mascia, M., Palmas, S., Renold, F. 1998Environ. Sci. Technol.323570CrossRefGoogle Scholar
  3. 3.
    Paniza, M., Cerisola, G. 2004Environ. Sci. Technol.385470CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou, M., Dai, Q., Lei, L., Ma, C., Wang, D. 2005Environ. Sci. Technol.39363PubMedGoogle Scholar
  5. 5.
    Polcaro, A.M., Vacca, A., Palmas, S., Mascia, M. 2003J. Appl. Electrochem.33885CrossRefGoogle Scholar
  6. 6.
    F.D. Gibson, R.C. Rhees, J.I. Gibson and B.B. Halker, US Patent 3 764 500 (1973)Google Scholar
  7. 7.
    Schumann, U., Grundler, P. 1998Water Res.322835CrossRefGoogle Scholar
  8. 8.
    Keech, P.G., Bunce, N.J. 2003J. Appl. Electrochem.3379CrossRefGoogle Scholar
  9. 9.
    W.R. Preis and W. Cole, Jr., US Patent 3 766 033 (1973)Google Scholar
  10. 10.
    R. Morichon and B. Serpaud, Techniques, Sciences, Methodes: Genie Urbain– Genie Rural 1 (1989) 37–44, through Chem. Abstr., 111, 83329Google Scholar
  11. 11.
    Tennakoon, C.L.K., Bhardwaj, R.C., O’M. Bockris, J. 1996J. Appl. Electrochem.2618CrossRefGoogle Scholar
  12. 12.
    Foti, G., Gandine, D., Comninellis, C., Perret, A., Haenni, W. 1999Electrochem. Solid-state Lett.2228CrossRefGoogle Scholar
  13. 13.
    Martinez-Hiutle, C.A., Quiroz, M.A., Comninellis, C., Ferro, S., De Battisti, A. 2004Electrochim. Acta50949CrossRefGoogle Scholar
  14. 14.
    G.M. Gustafson, US Patent 6 146 507 (2000)Google Scholar
  15. 15.
    W. Muller, US Patent 4 654 071 (1987)Google Scholar
  16. 16.
    Ranalli, G., Chiumenti, R., Donantoni, L., Sorlini, C. 1996J. Environ. Sci. HealthA311705Google Scholar
  17. 17.
    Zanardini, E., Valle, A., Gigliotti, C., Papagno, G., Ranalli, G., Sorlini, C. 2002J. Environ. Sci. HealthA371463Google Scholar
  18. 18.
    H.J.M. Creighton and B. Franklin, J. Franklin Institute, 1919, 157Google Scholar
  19. 19.
    Pierce, M.L., Moore, C.B. 1982Water Res.161247Google Scholar
  20. 20.
    Raven, K.P., Jain, A., Loeppert, R.H. 1998Environ. Sci. Technol.32344CrossRefGoogle Scholar
  21. 21.
    E.C. Brainard, US Patent, 5 935 412 (1999)Google Scholar
  22. 22.
    Marconato, J.C., Bidoia, E.D., Rocha-Filho, R.C. 1998Bull. Electrochem.14228Google Scholar
  23. 23.
    C. Dutil, G. Gagne, R. Chabot and Y. Comeau, US Patent 2 166 819 (2002)Google Scholar
  24. 24.
    S. Moniwa, T. Menju and S. Kazuo, Japanese Patent, 126 861, 2003, through Chem. Abstr., 138, 343040Google Scholar
  25. 25.
    Keech, P.G., Chartrand, M.M.G., Bunce, N.J. 2002J. Electroanal. Chem.53475CrossRefGoogle Scholar
  26. 26.
    Lo, K.V., Chen, A., Liao, P.H. 1994J. Environ. Sci. HealthA2983Google Scholar
  27. 27.
    P.G. Keech, Electrochemical oxidation of simple indoles. MSc Thesis, University of Guelph, 2001Google Scholar
  28. 28.
    Kremer, M.L. 2003J. Phys. Chem.1071734Google Scholar
  29. 29.
    Arienzo, M., Chiarenzelli, J., Scrudato, R. 2001J. Hazard. Mater.B87187CrossRefGoogle Scholar
  30. 30.
    Comninellis, C., Pulgarin, C. 1993J. Appl. Electrochem.23108CrossRefGoogle Scholar
  31. 31.
    Stucki, S., Kotz, R., Carcer, B., Suter, W. 1991J. Appl. Electrochem.2199CrossRefGoogle Scholar
  32. 32.
    Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M.A., Comninellis, C. 2003J. Electrochem. Soc.150D79CrossRefGoogle Scholar
  33. 33.
    Panizza, M., Cerisola, G. 2004Electrochim. Acta493221CrossRefGoogle Scholar
  34. 34.
    Cañizares, P., Garcia-Gomez, J., Saez, C., Rodrigo, M.A. 2004J. Appl. Electrochem.3487CrossRefGoogle Scholar
  35. 35.
    Weaver, J.C., Chizmadzhev, Y.A. 1996Bioelectrochem. Bioenerg.41135CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of GuelphGuelphCanada

Personalised recommendations