Journal of Applied Electrochemistry

, Volume 35, Issue 6, pp 615–623 | Cite as

The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries

  • Hsiang-Hwan Lee
  • Yung-Yun Wang
  • Chi-Chao Wan
  • Mo-Hua Yang
  • Hung-Chun Wu
  • Deng-Tswen Shieh


The role of vinylene carbonate (VC) as a thermal additive to electrolytes in lithium ion batteries is studied in two aspects: the protection of liquid electrolyte species and the thermal stability of the solid electrolyte interphase (SEI) formed from VC on graphite electrodes at elevated temperatures. The nuclear magnetic resonance (NMR) spectra indicate that VC can not protect LiPF6 salt from thermal decomposition. However, the function of VC on SEI can be observed via impedance and electron spectroscopy for chemical analysis (ESCA). These results clearly show VC-induced SEI comprises polymeric species and is sufficiently stable to resist thermal damage. It has been confirmed that VC can suppress the formation of resistive LiF, and thus reduce the interfacial resistance.

Key words

additives high temperature lithium-ion battery solid electrolyte interphase thermal stability vinylene carbonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The technical support of Materials Reasearch Laboratories of Industrial Technology Reasearch Institute (Taiwan) is acknowledged. The ESCA analysis done by Ms. Hsiang-Ping Wen of the Instrumentation Center in National Taiwan University is especially appreciated.


  1. 1.
    Andersson, A.M., Edström, K. 2001J. Electrochem. Soc.148A1100CrossRefGoogle Scholar
  2. 2.
    Andersson, A.M., Edström, K., Rao, N., Wendsjö, A. 1999J. Power Sources81–82286CrossRefGoogle Scholar
  3. 3.
    Yamaki, J.I., Takatsuji, H., Kawamura, T., Egashira, M. 2002Solid State Ionics148241Google Scholar
  4. 4.
    Sacken, U.V., Nodwell, E., Sundher, A., Dahn, J.R. 1995J. Power Sources54240Google Scholar
  5. 5.
    Joho, F., Novák, P., Spahr, M.E. 2002J. Electrochem. Soc.149A1020Google Scholar
  6. 6.
    Pasquier, A.D., Disma, F., Bowmer, T., Gozdz, A.S., Amatucci, G., Tarascon, J.M. 1998J. Electrochem. Soc.145472Google Scholar
  7. 7.
    Katayama, N., Kawamura, T., Baba, Y., Yamaki, J.I. 2002J. Power Sources109321Google Scholar
  8. 8.
    Richard, M.N., Dahn, J.R. 1999J. Electrochem. Soc.1462068Google Scholar
  9. 9.
    Jiang, J., Dahn, J.R. 2004Electrochem. Commun.639Google Scholar
  10. 10.
    MacNeil, D.D., Larcher, D., Dahn, J.R. 1999J. Elecrochem. Soc.1463596Google Scholar
  11. 11.
    Sloop, S.E., Pugh, J.K., Wang, S., Kerr, J.B., Kinoshita, K. 2001Electrochem. Solid-State Lett.4A42Google Scholar
  12. 12.
    Lee, H.H., Wan, C.C., Wang, Y.Y. 2004J. Elecrochem. Soc.151A542Google Scholar
  13. 13.
    Zhang, X., Ross, P.N.,Jr., Kostecki, R., Kong, F., Sloop, S., Kerr, J.B., Striebel, K., Cairns, E.J., McLarnon, F. 2001J. Elecrochem. Soc.148A463Google Scholar
  14. 14.
    Araki, K., Sato, N. 2003J. Power Sources124124Google Scholar
  15. 15.
    Oesten, R., Heider, U., Schmidt, M. 2002Solid State Ionics148391Google Scholar
  16. 16.
    Contestabile, M., Morselli, M., Paraventi, R., Neat, R.J. 2003J. Power Sources119–121943Google Scholar
  17. 17.
    Zhang, S.S., Xu, K., Jow, T.R. 2002Electrochem. Solid-State Lett.5A206Google Scholar
  18. 18.
    Jiang, J., Dahn, J.R. 2003Electrochem. Solid-State Lett.6A180Google Scholar
  19. 19.
    B. Simon and J.P. Boeuve US Patent No. 5,626,981 (1997)Google Scholar
  20. 20.
    Matsuoka, O., Hiwara, A., Omi, T., Toriida, M., Hayashi, T., Tanaka, C., Saito, Y., Ishida, T., Tan, H., Ono, S.S., Yamamoto, S. 2002J. Power Sources108128Google Scholar
  21. 21.
    Möller, K.C., Santner, H.J., Kern, W., Yamaguchi, S., Besenhard, J.O., Winter, M. 2003J. Power Sources119–121561Google Scholar
  22. 22.
    Jeong, S.K., Inaba, M., Mogi, R., Iriyama, Y., Abe, T., Ogumi, Z. 2001Langmuir178281Google Scholar
  23. 23.
    Zhang, X., Kostecki, R., Richardson, T.J., Pugh, J.K., Ross, P.N.,Jr. 2001J. Elecrochem. Soc.148A1341Google Scholar
  24. 24.
    E. Fluck and G. Heckmann, in J.G. Verkade and K.D. Quin (Eds), ‘Ch. 2 in Phosphorous-31 NMR Spectroscopy in Stereochemical Analysis – Organic Compounds and Metal Complexes’, (Wiley-VCH, Weinheim, 1987)Google Scholar
  25. 25.
    Abraham, R.J., Fisher, J., Loftus, L. 1987Introduction to NMR spectroscopy2John Wiley & SonsEssex1Google Scholar
  26. 26.
    Spectral Data Base System for Organics Compounds (SDBS), RIDDB/SDBS/menu-e.htmlGoogle Scholar
  27. 27.
    Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M., Heider, U. 2002Eelectrochim. Acta471423Google Scholar
  28. 28.
    Schechter, A., Aurbach, D. 1999Langmuir153334Google Scholar
  29. 29.
    Aurbach, D., Weissman, I., Schechter, A. 1996Langmuir123991Google Scholar
  30. 30.
    Ota, H., Shima, K., Ue, M., Yamaki, J. 2004Electrochim. Acta49565Google Scholar
  31. 31.
    Wang, Y., Balbuena, P.B. 2002J. Phys. Chem. B1064486Google Scholar
  32. 32.
    Ding, L., Li, Y., Li, Y., Liang, Y., Huang, J. 2001European Polymer J.372453Google Scholar
  33. 33.
    Ota, H., Sakata, Y., Otake, Y., Shima, K., Ue, M., Yamaki, J. 2004J. Elecrochem. Soc.151A1778Google Scholar
  34. 34.
    Ota, H., Sakata, Y., Inoue, A., Yamahuchi, S. 2004J. Elecrochem. Soc.151A1659Google Scholar
  35. 35.
    Aurbach, D., Gnanaraj, J.S., Geissler, W., Schmidt, M. 2004J. Elecrochem. Soc.151A23Google Scholar
  36. 36.
    Herstedt, M., Andersson, A.M., Rensmo, H., Sigbahn, H., Edströem, K. 2004Electrochim. Acta494939Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hsiang-Hwan Lee
    • 1
  • Yung-Yun Wang
    • 1
  • Chi-Chao Wan
    • 1
  • Mo-Hua Yang
    • 2
  • Hung-Chun Wu
    • 2
  • Deng-Tswen Shieh
    • 2
  1. 1.Department of Chemical EngineeringNational Tsing-Hua UniversityHsinchuTaiwan ROC
  2. 2.Materials Reasearch Laboratories of Industrial Technology Reasearch InstituteChutongTaiwanROC

Personalised recommendations