Journal of Applied Electrochemistry

, Volume 35, Issue 5, pp 479–485 | Cite as

CdTe semiconductor nanowires and NiFe ferro-magnetic metal nanowires electrodeposited into cylindrical nano-pores on the surface of anodized aluminum

  • Takeshi Ohgai
  • Laurent Gravier
  • Xavier Hoffer
  • Jean-Philippe Ansermet


Cylindrical nano-pores of an anodized aluminum oxide layer on the surface of bulk aluminum were used as templates for the electrochemical growth of semiconductor and magnetic nanowires. The electrodeposition of CdTe and NiFe was investigated to determine the optimum conditions for each nanowire growth over a wide range of cathode potentials. The desired composition of Cd50Te50 and Ni80Fe20 was achieved by controlling the cathode potential during electrodeposition. Temperature dependences of resistance for CdTe nanowires confirmed the semiconductor character with amorphous behavior at low temperature, while those of NiFe nanowires showed metallic character. The anisotropic magnetoresistance (AMR) of NiFe nanowires reached 1.9% at 300 K.

Key words

CdTe electrodeposition magnetoresistance nanowire NiFe semiconductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, C.R. 1991Adv. Mater3457Google Scholar
  2. 2.
    Aimawlawi, D., Coombs, N., Moskovits, M. 1991J. Appl. Phys704421Google Scholar
  3. 3.
    Whitney, T.M., Jiang, J.S., Searson, P.C., Chien, C.L. 1993Science2611316Google Scholar
  4. 4.
    Prieto, A.L., Sander, M.S., Martin-Gonzalez, M.S., Gronsky, R., Sands, T., Stacy, A.M. 2001J. Am. Chem. Soc1237160CrossRefGoogle Scholar
  5. 5.
    Xu, D., Guo, Y., Yu, D., Guo, G., Tang, Y., Yu, D.P. 2002J. Mater. Res171711Google Scholar
  6. 6.
    Peng, X.S., Meng, G.W., Zhang, J., Wang, X.F., Wang, C.Z., Liu, X., Zhang, L.D. 2002J. Mater. Res171283Google Scholar
  7. 7.
    Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., Fert, A. 1994Appl. Phys. Lett652484CrossRefGoogle Scholar
  8. 8.
    Blondel, A., Meier, J.P., Doudin, B., Ansermet, J.-Ph. 1994Appl. Phys. Lett653019CrossRefGoogle Scholar
  9. 9.
    Liu, K., Nagodawithana, K., Searson, P.C., Chien, C.L. 1995Phys. Rev. B517381Google Scholar
  10. 10.
    Dubois, S., Marchal, C., Beuken, J.M., Piraux, L., Duvail, J.L., Fert, A., George, J.M., Maurice, J.L. 1997Appl. Phys. Lett70396Google Scholar
  11. 11.
    Heydon, G.P., Hoon, S.R., Farley, A.N., Tomlinson, S.L., Valera, M.S., Attenborough, K., Schwarzacher, W. 1997J. Phys. D: Appl. Phys301083Google Scholar
  12. 12.
    Zenger, M., Breuer, W., Zölfl, M., Pulwey, R., Raabe, J., Weiss, D. 2001IEEE Trans. Magn372094Google Scholar
  13. 13.
    Routkevitch, D., Bigioni, T., Moskovits, M., Xu, J.M. 1996J. Phys. Chem10014037CrossRefGoogle Scholar
  14. 14.
    Li, F., Metzger, R.M. 1997J. Appl. Phys813806Google Scholar
  15. 15.
    Zeng, H., Zheng, M., Skomski, R., Sellmyer, D.J., Liu, Y., Menon, L., Bandyopadhyay, S. 2000J. Appl. Phys874718Google Scholar
  16. 16.
    Peng, Y., Zhang, H.L., Pan, S.L., Li, H.L. 2000J. Appl. Phys877405CrossRefGoogle Scholar
  17. 17.
    Forrer, P., Schlottig, F., Siegenthaler, H., Textor, M. 2000J. Appl. Electrochem30533Google Scholar
  18. 18.
    Yin, A.J., Li, J., Jian, W., Bennett, A.J., Xu, J.M. 2001Appl. Phys. Lett791039Google Scholar
  19. 19.
    Jagminas, A. 2002J. Appl. Electrochem321201Google Scholar
  20. 20.
    Masuda, H., Fukuda, K. 1995Science2681466Google Scholar
  21. 21.
    Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., Tamamura, T. 1997WGEKHGHAppl. Phys. Lett712770CrossRefGoogle Scholar
  22. 22.
    Jessensky, O., Müller, F., Gösele, U. 1998Appl. Phys. Lett721173CrossRefGoogle Scholar
  23. 23.
    González, J.A., López, V., Bautista, A., Otero, E., Nóvoa, X.R. 1999J. Appl. Electrochem29229Google Scholar
  24. 24.
    Tayaoka, A., Tayaoka, E., Yamasaki, J. 1996J. Appl. Phys796016Google Scholar
  25. 25.
    Nielsch, K., Müller, F., Li, A.P., Gösele, U. 2000Adv. Mater12582CrossRefGoogle Scholar
  26. 26.
    Ohgai, T., Hoffer, X., Gravier, L., Ansermet, J.-Ph. 2004J. Appl. Electrochem341007Google Scholar
  27. 27.
    Wegrowe, J.E., Gilbert, S.E., Kelly, D., Doudin, B., Ansermet, J.-Ph. 1998IEEE Trans. Magn34903Google Scholar
  28. 28.
    Martin-Gonzalez, M.S., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M. 2002J. Electrochem. Soc149C546Google Scholar
  29. 29.
    Takahashi, M., Muramatsu, Y., Watanabe, M., Wakita, K., Miyuki, T., Ikeda, S. 2002J. Electrochem. Soc149C311Google Scholar
  30. 30.
    Hsiu, S.I., Sun, I.W. 2004J. Appl. Electrochem341057Google Scholar
  31. 31.
    Kröger, F.A. 1978J. Electrochem. Soc1252028Google Scholar
  32. 32.
    Sridharan, K., Sheppard, K. 1997J. Appl. Electrochem271198Google Scholar
  33. 33.
    Zech, N., Podlaha, E.J., Landolt, D. 1998J. Appl. Electrochem281251Google Scholar
  34. 34.
    Dahms, H., Croll, I.M. 1965J. Electrochem. Soc112771Google Scholar
  35. 35.
    G. Nimtz, in O. Madelung (Ed.), Physics of II-VI and I-VII Compounds, Semimagnetic Semiconductors, Landolt-Börnstein, New Series, Group 3, Vol. 17b (Springer-Verlag, Berlin, 1982), p.225.Google Scholar
  36. 36.
    P. Gross and W. Richter, in O. Madelung (Ed.), Physics on Non-Tetrahedrally Bonded Elements and Binary Compounds, Landolt-Börnstein, New Series, Group 3, Vol.17e (Springer-Verlag, Berlin, 1983), p. 106.Google Scholar
  37. 37.
    Kolyubakin, A.I., Antonov, V.E., Barkalov, O.I., Gurov, A.F., Harkunov, A.I. 2001J. Non-Cryst. Solids28930Google Scholar
  38. 38.
    Majeed Khan, M.A., Zulfequar, M., Husain, M. 2003J. Mater. Sci38549Google Scholar
  39. 39.
    Mott, N.F. 1970Phil. Mag227Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Takeshi Ohgai
    • 1
    • 2
  • Laurent Gravier
    • 1
  • Xavier Hoffer
    • 1
  • Jean-Philippe Ansermet
    • 1
  1. 1.Institut de Physique des NanostructuresEcole Polytechnique Fédérale de LausanneSwitzerland
  2. 2.Department of Materials Science and EngineeringNagasaki UniversityNagasakiJapan

Personalised recommendations