Advertisement

Information Technology and Management

, Volume 20, Issue 4, pp 203–221 | Cite as

A big-data analytics method for capturing visitor activities and flows: the case of an island country

  • Shah Jahan MiahEmail author
  • HuyQuan Vu
  • John Gammack
Article

Abstract

Understanding how people move from one location to another is important both for smart city planners and destination managers. Big-data generated on social media sites have created opportunities for developing evidence-based insights that can be useful for decision-makers. While previous studies have introduced observational data analysis methods for social media data, there remains a need for method development—specifically for capturing people’s movement flows and behavioural details. This paper reports a study outlining a new analytical method, to explore people’s activities, behavioural, and movement details for people monitoring and planning purposes. Our method utilises online geotagged content uploaded by users from various locations. The effectiveness of the proposed method, which combines content capturing, processing and predicting algorithms, is demonstrated through a case study of the Fiji Islands. The results show good performance compared to other relevant methods and show applicability to national decisions and policies.

Keywords

Big data Decision making Smart city initiatives Data analytics Location flows 

Notes

References

  1. 1.
    Pick JB, Turetken O, Deokar AV, Sarkar A (2017) Location analytics and decision support: reflections on recent advancements, a research framework, and the path ahead. Decis Support Syst 99:1–8CrossRefGoogle Scholar
  2. 2.
    Lozano MG, Schreiber J, Brynielsson J (2017) Tracking geographical locations using a geo-aware topic model for analyzing social media data. Decis Support Syst 99:18–29CrossRefGoogle Scholar
  3. 3.
    Power DJ (2015) ‘Big data’ decision making use cases. Springer, Cham. https://link.springer.com/chapter/10.1007%2F978-3-319-18533-0_1. Accessed 20 Nov 2018Google Scholar
  4. 4.
    Song H, Liu H (2017) Predicting tourist demand using big data. In: Xiang Z, Fesenmaier DR (eds) Analytics in smart tourism design—concepts and methods. Springer, ChamGoogle Scholar
  5. 5.
    Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A, Ahmed E, Chiroma H (2016) The role of big data in smart city. Int J Inf Manag 36:748–758CrossRefGoogle Scholar
  6. 6.
    Falconer G, Mitchell S (2012) Smart city framework: a systematic process for enabling smart + connected communities. Cisco Internet Business Solutions Group (IBSG), Cisco IBSG, Cisco, 09/12, pp 1–10Google Scholar
  7. 7.
    Mangharam R, Reyerson M, Viscelli S, Balakrishanan H, Bayen A, Amin S, Richards L, Bagley L, Pappas G (2017) MOBILITY21: strategic investments for transportation infrastructure & technology, CCC Led Whitepapers. http://cra.org/ccc/resources/ccc-led-whitepapers/. Last accessed 12 April 2017
  8. 8.
    Chen L, Nugent C, Mulvenna M, Finlay D, Hong X (2009) Semantic smart homes: towards knowledge rich assisted living environments. In: McClean S, Millard P, El-Darzi E, Nugent C (eds) Intelligent patient management. Springer, pp 279–296Google Scholar
  9. 9.
    Demirkan H (2013) A smart healthcare systems framework. IT Prof 15(5):38–45CrossRefGoogle Scholar
  10. 10.
    Harvey C (2017) Big data challenges, datamation. http://www.datamation.com/big-data/big-data-challenges.html. Accessed 20 Nov 2018
  11. 11.
    Thelwall M, Goriunova O, Vis F, Faulkner S, Burns A et al (2016) Chatting through pictures? A classification of images tweeted in one week in the UK and USA. J Assoc Inf Sci Technol 67(11):2575–2586CrossRefGoogle Scholar
  12. 12.
    Sivarajah U, Kamal MM, Irani Z, Weerakkody V (2017) Critical analysis of big data challenges and analytical methods. J Bus Res 70:263–286CrossRefGoogle Scholar
  13. 13.
    Xiang Z, Fesenmaier DR (2017) Analytics in smart tourism design: concepts and methods. Springer. http://www.springer.com/gp/book/9783319442624. Accessed 20 Nov 2018
  14. 14.
    Marine-Roig E (2017) measuring destination image through travel reviews in search engines. Sustainability 9(8):1425.  https://doi.org/10.3390/su9081425 CrossRefGoogle Scholar
  15. 15.
    Xiang Z, Schwartz Z, Gerdes JH, Uysal M (2015) What can big data and text analytics tell us about hotel guest experience and satisfaction? Int J Hosp Manag 44:120–130.  https://doi.org/10.1016/j.ijhm.2014.10.013 CrossRefGoogle Scholar
  16. 16.
    Marine-Roig E, Clavé SA (2015) Tourism analytics with massive user-generated content: a case study of Barcelona. J Destin Mark Manag 4:162–172.  https://doi.org/10.1016/j.jdmm.2015.06.004 CrossRefGoogle Scholar
  17. 17.
    Huang A (2016) TweetDay: a better visualization for your Twitter timeline. https://medium.com/@andyoyellow/tweetday-a-better-visualization-for-your-twitter-timeline-49e95daf4ae. Accessed 20 Nov 2018
  18. 18.
    Gregor S, Hevner AR (2013) Positioning and presenting design science research for maximum impact. MIS Q 37(2):337–355CrossRefGoogle Scholar
  19. 19.
    Hevner A, March S, Park J, Ram S (2004) Design science in information systems research. MIS Q 28(1):75–105CrossRefGoogle Scholar
  20. 20.
    Buhalis D, Amaranggana A (2014) Smart tourism destination. In: Proceedings of 21st information and communication technologies in tourism.  https://doi.org/10.1007/978-3-319-03973-2_40. Accessed 20 Nov 2018CrossRefGoogle Scholar
  21. 21.
    Japan Smart City Portal (2013) Japan moving forward on smart cities. https://www.greenbiz.com/news/2013/02/25/japan-moving-forward-smart-cities. Accessed 20 Nov 2018
  22. 22.
    Li Y, Xiao L, Ye Y, Xu W, Law A (2016) Understanding tourist space at a historic site through space syntax analysis: the case of Gulangyu, China. Tour Manag 52:30–43CrossRefGoogle Scholar
  23. 23.
    Cheng M, Edwards D (2015) Social media in tourism: a visual analytic approach. Curr Issues Tour 18(11):1080–1087CrossRefGoogle Scholar
  24. 24.
    Miah SJ, VU HQ, Gammack J, McGrath GM (2017) A big-data analytics method for tourist behaviour analysis. Inform Manage 54(6):771–785CrossRefGoogle Scholar
  25. 25.
    Chua A, Servillo L, Marcheggiani E, Moere AV (2016) Mapping Cilento: using geotagged social media data to characterize tourist flows in southern Italy. Tour Manag 57:295–310CrossRefGoogle Scholar
  26. 26.
    WTTC (2015) World travel & tourism council, travel & tourism economic impact 2015 Fiji. https://www.wttc.org/-/media/files/reports/economic%20impact%20research/countries%202015/fiji2015.pdf. Accessed 20 Nov 2018
  27. 27.
    Kalouniviti M (2016) Tourism report data supports bureau statistics, The Fiji Times ONLINE. http://www.fijitimes.com/story.aspx?id=383648. Accessed 22 Nov 2017
  28. 28.
    Baskerville RL, Kaul M, Storey VC (2015) Genres of inquiry in design-science research: justification and evaluation of knowledge production. MIS Q 39(3):541–564CrossRefGoogle Scholar
  29. 29.
    Geerts LG (2011) A design science research methodology and its application to accounting information systems research. Int J Account Inf Syst 12:142–151CrossRefGoogle Scholar
  30. 30.
    March S, Smith G (1995) Design and natural science research on information technology. Decis Support Syst 15:251–266CrossRefGoogle Scholar
  31. 31.
    Peffers K, Tuunanen T, Rothenberger M, Chatterjee S (2008) A design science research methodology for information systems research. J Manag Inf Syst 24(3):45–77CrossRefGoogle Scholar
  32. 32.
    Kisilevich S, Krstajic M, Keim D, Andrienko N, Andrienko G (2010) Event-based analysis of people’s activities and behavior using Flickr and Panoramio geotagged photo collections. In: Proceedings of the 14th international conference information visualisation.  https://doi.org/10.1109/IV.2010.94. Accessed 20 Nov 2018
  33. 33.
    Andrijcic E, Haimes Y, Beatley T (2013) Public policy implications of harmonizing engineering technology with socio-economic modeling: application to transportation infrastructure management. Transp Res Part A Policy Pract 50:62–73CrossRefGoogle Scholar
  34. 34.
    ISO (2002) Electronic (ISO2002) ISO/IEC 15938-1:2002 Information technology—multimedia content description interface—part 1: systems 2002Google Scholar
  35. 35.
    Manjunath BS, Ohm JR, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11:703–715CrossRefGoogle Scholar
  36. 36.
    Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. Workshop on statistical learning in computer vision, pp 1–22Google Scholar
  37. 37.
    Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: speeded up robust features. Comput Vis Image Underst 110:346–359.  https://doi.org/10.1016/j.cviu.2007.09.014 CrossRefGoogle Scholar
  38. 38.
    Li FF, Perona P (2005) A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition, pp 524–531. https://dl.acm.org/citation.cfm?id=1069129. Accessed 20 Nov 2018
  39. 39.
    Hinton GE (2009) Deep belief networks. Scholarpedia 4(5):5947.  https://doi.org/10.4249/scholarpedia.5947 CrossRefGoogle Scholar
  40. 40.
    Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387.  https://doi.org/10.1561/2000000039 CrossRefGoogle Scholar
  41. 41.
    Xia J, Zeephongsekul P, Arrowsmith C (2009) Modelling spatio-temporal movement of tourists using finite Markov chains. Math Comput Simul 79:1544–1553CrossRefGoogle Scholar
  42. 42.
    Haghighi PD, Burstein F, Li H, Wang C (2013) Integrating social media with ontologies for real-time crowd monitoring and decision support in mass gatherings. In: Pacific Asia conference on information systems, p 64. https://aisel.aisnet.org/pacis2013/64. Accessed 20 Nov 2018
  43. 43.
    Cooray T (2008) Applied time series: analysis and fore casting. Alpha Science Intl Ltd., OxfordGoogle Scholar
  44. 44.
    Venable J, Pries-Heje J, Baskerville R (2016) FEDS: a framework for evaluation in design science research. Eur J Inf Syst 25(1):77–89CrossRefGoogle Scholar
  45. 45.
    Zhou X, Xu C, Kimmons B (2015) Detecting tourism destinations using scalable geospatial analysis based on cloud computing platform. Comput Environ Urban Syst 54:144–153CrossRefGoogle Scholar
  46. 46.
    Singh G, Bansal D, Sofat S, Aggarwal N (2017) Smart patrolling: an efficient road surface monitoring using smartphone sensors and crowdsourcing. Pervasive Mobile Comput 40:71–88.  https://doi.org/10.1016/j.pmcj.2017.06.002 CrossRefGoogle Scholar
  47. 47.
    Min W, Bao BK, Xu C (2014) Multimodal spatio-temporal theme modelling for landmark analysis. IEEE Multimedia 21(3):20–29CrossRefGoogle Scholar
  48. 48.
    Spyrou E, Mylonas P (2016) Analyzing Flickr metadata to extract location-based information and semantically organize its photo content. Neurocomputing 172:114–133CrossRefGoogle Scholar
  49. 49.
    Deeksha SD, Ashrith HC, Bansode R, Kamath S (2016) A spatial clustering approach for efficient landmark discovery using geo-tagged photos. In: 2015 IEEE international conference on electronics, computing and communication technologies (CONECCT). Bangalore, IndiaGoogle Scholar
  50. 50.
    Xu Y, Hu T, Li Y (2016) A travel route recommendation algorithm with personal preference. In: 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD), Changsha, ChinaGoogle Scholar
  51. 51.
    Wen YT, Cho KJ, Peng WC, Yeo J, Hwang SW (2016) KSTR: keyword-aware skyline travel route recommendation. In: 2015 IEEE international conference on data mining, 2016, Atlantic City, NJ, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Victoria University Business SchoolVictoria UniversityMelbourneAustralia
  2. 2.Department of Information Systems and Business AnalyticsDeakin UniversityBurwoodAustralia
  3. 3.Zayed UniversityAbu DhabiUAE

Personalised recommendations