Information Technology and Management

, Volume 18, Issue 3, pp 223–239 | Cite as

Evaluating the impact of smart technologies on harbor’s logistics via BPMN modeling and simulation

  • Mario G. C. A. Cimino
  • Filippo Palumbo
  • Gigliola Vaglini
  • Erina Ferro
  • Nedo Celandroni
  • Davide La Rosa


A smart Information and Communication Technology (ICT) enables a synchronized interplay of different key factors, aligning infrastructures, consumers, and governmental policy-making needs. In the harbor’s logistics context, smart ICT has been driving a multi-year wave of growth. Although there is a standalone value in the technological innovation of a task, the impact of a new smart technology is unknown without quantitative analysis methods on the end-to-end process. In this paper, we first present a review of the smart ICT for marine container terminals, and then we propose to evaluate the impact of such smart ICT via business process model and notation (BPMN) modeling and simulation. The proposed approach is discussed in a real-world modeling and simulation analysis, made on a pilot terminal of the Port of Leghorn (Italy).


Smart harbors Wireless sensor network RFID BPMN Workflow modeling Workflow simulation 



Work carried out in the framework of the Italian PRIN Project "Eguaglianza Nei Diritti Fondamentali Nella Crisi Dello Stato E Delle Finanze Pubbliche: Una Proposta Per Un Nuovo Modello Di Coesione Sociale Con Specifico Riguardo Alla Liberalizzazione E Regolazione Dei Trasporti", activity "Sistema Di Monitoraggio A Distan- za Ed Automatizzato Delle Merci E Di Eventuali Persone Preposte Alla Sorveglianza Delle Stesse".


  1. 1.
    van der Aalst WM (2015) Business process simulation survival guide. In: Handbook on business process management, vol. 1. Springer, pp 337–370Google Scholar
  2. 2.
    Abbate S, Avvenuti M, Corsini P, Vecchio A (2009) Localization of shipping containers in ports and terminals using wireless sensor networks. In: proceedings of international conference on computational science and engineering, CSE’09, vol. 2. IEEE, pp 587–592Google Scholar
  3. 3.
    Andalusian Institute of Technology: SMART-PORT: Action plan towards the smart port concept in the Mediterranean area. Accessed 18 May 2015
  4. 4.
    Asosheh A, Afshinfar A, Kharrat M, Ramezani N (2008) A network model for the intelligent marine container tracking. In: 8th WSEAS International conference on applied informatics and communications (AIC08) RhodesGoogle Scholar
  5. 5.
    Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805CrossRefGoogle Scholar
  6. 6.
    Awad A, Frunzke T, Dressler F (2007) Adaptive distance estimation and localization in WSN using RSSI measures. In: Proceedings of 10th euromicro conference on digital system design architectures, methods and tools, DSD 2007. IEEE, pp 471–478Google Scholar
  7. 7.
    Badura D (2014) Modelling business processes in logistics with the use of diagrams BPMN and UML. Forum Sci Oecon 2:35–50Google Scholar
  8. 8.
    Bahl P, Padmanabhan VN (2000) RADAR: an in-building rf-based user location and tracking system. In: Proceedings of INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies, vol 2. IEEE, pp 775–784Google Scholar
  9. 9.
    Barsocchi P, Lenzi S, Chessa S, Furfari F (2012) Automatic virtual calibration of range-based indoor localization systems. Wirel Commun Mob Comput 12(17):1546–1557CrossRefGoogle Scholar
  10. 10.
    Bilstrup U, Wiberg PA (2004) An architecture comparison between a wireless sensor network and an active RFID system. In: The 29th Annual IEEE international conference on local computer networks, 2004. IEEE, pp 583–584Google Scholar
  11. 11.
    Bontekoning Y, Macharis C, Trip J (2004) Is a new applied transportation research field emerging? A review of intermodal rail-truck freight transport literature. Transport Res Part A: Policy Pract 38(1):1–34CrossRefGoogle Scholar
  12. 12.
    Boschian V, Fanti MP, Iacobellis G, Ukovich W (2012) Analysis of impact of ICT solutions in international freight management. Eur Transport\(\backslash\)Trasporti Europei (51)Google Scholar
  13. 13.
    Caceres R, Mendoza H, Tuñón G, Rabelo LC, Pastrana J (2015) Modeling and simulation of berthing processes for a Panamanian container terminal using BPMN and discrete event simulation. In: Proceedings of the 2015 international conference on operations excellence and service engineeringGoogle Scholar
  14. 14.
    Chantzis K, Chatzigiannakis I, Rolim J (2014) Design and evaluation of a real-time locating system for wireless sensor networks. J Locat Based Serv 8(2):97–122CrossRefGoogle Scholar
  15. 15.
    Cho H, Choi H, Lee W, Jung Y, Baek Y (2006) LITeTag: design and implementation of an RFID system for IT-based port logistics. J Commun 1(4):48–57CrossRefGoogle Scholar
  16. 16.
    Cho H, Kim J, Baek Y (2011) Large-scale active RFID system utilizing ZigBee networks. IEEE Trans Consum Electron 57(2):379–385CrossRefGoogle Scholar
  17. 17.
    Cho H, Kim T, Park Y, Baek Y (2012) Enhanced trajectory estimation method for RTLS in port logistics environment. In: proceedings of 2012 IEEE 14th international conference on high performance computing and communication and 2012 IEEE 9th international conference on embedded software and systems (HPCC-ICESS). IEEE, pp 1555–1562Google Scholar
  18. 18.
    Christiansen M, Fagerholt K, Nygreen B, Ronen D (2007) Maritime transportation. Handb Oper Res Manag Sci 14:189–284CrossRefGoogle Scholar
  19. 19.
    Chung WC, Ha DS (2003) An accurate ultra wideband (UWB) ranging for precision asset location. In: Proceedings of 2003 IEEE conference on ultra wideband systems and technologies. IEEE, pp 389–393Google Scholar
  20. 20.
    Ciaramella A, Cimino MG, Lazzerini B, Marcelloni F (2009) Using BPMN and tracing for rapid business process prototyping environments. ICEIS 3:206–212Google Scholar
  21. 21.
    Cimino MG, Marcelloni F (2011) Autonomic tracing of production processes with mobile and agent-based computing. Inf Sci 181(5):935–953CrossRefGoogle Scholar
  22. 22.
    Cimino MG, Vaglini G (2014) An interval-valued approach to business process simulation based on genetic algorithms and the BPMN. Information 5(2):319–356CrossRefGoogle Scholar
  23. 23.
    Craddock R, Stansfield E (2005) Sensor fusion for smart containers. In: Signal processing solutions for homeland security, 2005. The IEE Seminar on (Ref. No. 2005/11108). IET, p 12Google Scholar
  24. 24.
    Crainic TG, Kim KH et al (2006) Intermodal transportation. Transportation 14:467–537CrossRefGoogle Scholar
  25. 25.
    Dumas M, Van der Aalst WM, Ter Hofstede AH (2005) Process-aware information systems: bridging people and software through process technology. Wiley, HobokenCrossRefGoogle Scholar
  26. 26.
    Evangelista P (2002) The role of ICT in the logistics integration process of shipping lines. Pomorski zbornik 40(1):61–78Google Scholar
  27. 27.
    Garnier B, Andritsos F (2010) A port waterside security systemic analysis. In: Waterside security conference (WSS), 2010 International. IEEE, pp 1–6Google Scholar
  28. 28.
    Georgopoulou C, Kakalis NM, Psaraftis HN, Recagno V, Fozza S, Zacharioudakis P, Eiband A (2014) Green technologies and Smart ICT for sustainable freight transport. In: Efficiency and innovation in logistics. Springer, pp 15–33Google Scholar
  29. 29.
    Golfarelli M, Rizzi S (2009) What-if simulation modeling in business intelligence. Int J Data Warehous Min (IJDWM) 5(4):24–43CrossRefGoogle Scholar
  30. 30.
    Grajek M (2012) ICT for growth: a targeted approach. Technical Report, Bruegel Policy ContributionGoogle Scholar
  31. 31.
    Heilig L, Negenborn RR, Voß S (2015) Cloud-based intelligent transportation systems using model predictive control. In: Computational logistics. Springer, pp 464–477Google Scholar
  32. 32.
    Heilig L, Voß S (2014) A cloud-based SOA for enhancing information exchange and decision support in ITT operations. In: Computational logistics. Springer, pp 112–131Google Scholar
  33. 33.
    Hong SH, Kim BK, Eom DS (2009) Localization algorithm in wireless sensor networks with network mobility. IEEE Trans Consum Electron 55(4):1921–1928CrossRefGoogle Scholar
  34. 34.
    Jedermann R, Pötsch T, Lang W (2014) Smart sensors for the intelligent container. ITG-Fachbericht-Smart SysTech 2014Google Scholar
  35. 35.
    Jiang J, Guo, Y, Liao W, Li S, Xie X, Yuan L, Nian L (2014) Research on RTLS-based coordinate guided vehicle (CGV) for material distribution in discrete manufacturing workshop. In: Proceedings of 2014 IEEE international conference on internet of things (iThings), and green computing and communications (GreenCom), IEEE and cyber, physical and social computing (CPSCom). IEEE, pp 1–8Google Scholar
  36. 36.
    Kastek M, Dulski R, Zyczkowski M, Szustakowski M, Trzaskawka P, Ciurapinski W, Grelowska G, Gloza I, Milewski S, Listewnik K (2012) Multisensor system for the protection of critical infrastructure of a seaport. In: SPIE defense, security, and sensing. International Society for Optics and Photonics, pp 83,880M–83,880MGoogle Scholar
  37. 37.
    Khalifa IH, El Kamel A, Yim P (2011) Transportation process of containers BPMN-modelling and transformation into ACTIF model. ROMJIST 14(1):67–80Google Scholar
  38. 38.
    Kim KH (2005) Models and methods for operations in port container terminals. In: Logistics systems: design and optimization. Springer, pp 213–243Google Scholar
  39. 39.
    Kim KH, Hong BH (2010) Maritime logistics and applications of information technologies. In: Proceedings of 2010 40th international conference on computers and industrial engineering (CIE). IEEE, pp 1–6Google Scholar
  40. 40.
    Koniewski R, Dzielinski A, Amborski K (2006) Use of petri nets and business processes management notation in modelling and simulation of multimodal logistics chains. In: Proceedings 20th European conference on modeling and simulation, Institute of Control and Industrial Electronics, Warsaw University of TechnologyGoogle Scholar
  41. 41.
    Lim CH, Wan Y, Ng BP, See C (2007) A real-time indoor WiFi localization system utilizing smart antennas. IEEE Trans Consum Electron 53(2):618–622CrossRefGoogle Scholar
  42. 42.
    Object Management Group (OMG): business process model and notation (BPMN), version 2.0. (2011). Accessed 26 May 2015
  43. 43.
    Obogne MH, LIDASAN HS (2005) A study on the impact of information and communication technology on urban logistics system: a case in Metro Manila. J East Asia Soc Transp Stud 6:3005–3021Google Scholar
  44. 44.
    Organization for the Advancement of Structured Information Standards (OASIS): Web services business process execution language (WS-BPEL), version 2.0. (2007). Accessed 26 May 2015
  45. 45.
    Palumbo F, Barsocchi P, Chessa S, Augusto JC (2015) A stigmergic approach to indoor localization using Bluetooth Low Energy beacons. In: Proceedings of 2015 12th IEEE International conference on advanced video and signal based surveillance (AVSS). IEEE, pp 1–6Google Scholar
  46. 46.
    Palumbo F, Barsocchi P, Furfari F, Ferro E (2013) AAL middleware infrastructure for green bed activity monitoring. J Sens 2013Google Scholar
  47. 47.
    Palumbo F, Barsocchi P, Gallicchio C, Chessa S, Micheli A (2013) Multisensor data fusion for activity recognition based on reservoir computing. In: Evaluating AAL systems through competitive benchmarking. Springer, pp 24–35Google Scholar
  48. 48.
    Palumbo F, Gallicchio C, Pucci R, Micheli A (2016) Human activity recognition using multisensor data fusion based on reservoir computing. J Ambient Intell Smart Environ 8(2):87–107CrossRefGoogle Scholar
  49. 49.
    Patwari N, Hero AO, Perkins M, Correal NS, O’dea RJ (2003) Relative location estimation in wireless sensor networks. IEEE Trans Signal Process 51(8):2137–2148CrossRefGoogle Scholar
  50. 50.
    Priyantha NB, Chakraborty A, Balakrishnan H (2000) The cricket location-support system. In: Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, pp 32–43Google Scholar
  51. 51.
    Psaraftis HN, Panagakos G (2012) Green corridors in European surface freight logistics and the SuperGreen project. Proc Soc Behav Sci 48:1723–1732CrossRefGoogle Scholar
  52. 52.
    Rezapour TY, Atani RE, Abolghasemi MS (2014) Secure positioning for shipping containers in ports and terminals using WSN. In: Proceedings of 2014 11th international ISC conference on information security and cryptology (ISCISC). IEEE, pp 10–14Google Scholar
  53. 53.
    Saanen YA (2004) An approach for designing robotized marine container terminals. Delft University of Technology, DelftGoogle Scholar
  54. 54.
    Sikora A, Groza VF (2007) Fields tests for ranging and localization with time-of-flight-measurements using chirp spread spectrum rf-devices. In: Instrumentation and measurement technology conference proceedings, IMTC 2007. IEEE, pp 1–6Google Scholar
  55. 55.
    Stahlbock R, Voß S (2008) Operations research at container terminals: a literature update. Or Spectr 30(1):1–52CrossRefGoogle Scholar
  56. 56.
    Stajniak M, Guszczak B (2011) Analysis of logistics processes according to BPMN methodology. In: Information technologies in environmental engineering, pp 537–549Google Scholar
  57. 57.
    Steenken D, Voß S, Stahlbock R (2004) Container terminal operation and operations research-a classification and literature review. OR spect 26(1):3–49CrossRefGoogle Scholar
  58. 58.
    Taylor N (1992) Dover’s smart bridge. Proc Inst Mech Eng Part I: J Syst Control Eng 206(1):9–18CrossRefGoogle Scholar
  59. 59.
    Vis IF, De Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147(1):1–16CrossRefGoogle Scholar
  60. 60.
    Webb M et al (2008) Smart 2020: enabling the low carbon economy in the information age. Clim Group Lond 1(1):1–1Google Scholar
  61. 61.
    Weske M (2012) Business process management: concepts, languages, architectures. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  62. 62.
    Yang GH, Xu K, Li VO (2010) Hybrid cargo-level tracking system for logistics. In: Vehicular Technology conference (VTC 2010-Spring), 2010 IEEE 71st. IEEE, pp 1–5Google Scholar
  63. 63.
    Yang SH (2014) Hybrid RFID/WSNs for logistics management. In: Wireless Sensor networks. Springer, pp 235–246Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mario G. C. A. Cimino
    • 1
  • Filippo Palumbo
    • 2
    • 3
  • Gigliola Vaglini
    • 1
  • Erina Ferro
    • 2
  • Nedo Celandroni
    • 2
  • Davide La Rosa
    • 2
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly
  2. 2.Institute of Information Science and TechnologiesNational Research CouncilPisaItaly
  3. 3.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations