Advertisement

Orchestrating conflict in teams with the use of boundary objects and trading zones in innovation-driven engineering design projects

  • Constanza MirandaEmail author
  • Julian Goñi
  • Isabel Hilliger
Original Research Article
  • 46 Downloads

Abstract

While teamwork has been a central concern in engineering education, little research has systematically examined how conflict is managed in engineering teams of students. Socio-constructivism provides a solid base to explain how teamwork can foster innovation through the use of cultural artifacts, such as “boundary objects.” The purpose of this paper describing the anatomy of negotiation within several teams of engineering students located in universities of Northern California and Santiago de Chile from 2010 to 2017. We propose the concept of “conflict orchestration” to explain the dynamics of engineering teams working on innovation-driven engineering design challenges. A context sensitive qualitative research design was deployed using an ethnographic approach to the study team negotiation patterns observed in 11 teams of engineering students from Northern California and Santiago de Chile. The methodological focus was on identifying commonalities in the use of boundary objects and trading zones emerging from the students’ team interaction. Our findings illustrate two distinct strategies that the engineering teams adopted using boundary objects. We describe the use of Sticky Notes and Third Platforms. Finally, we explore students’ perceptions of the educational gain of PBL engineering design courses. The relevance of this study is threefold. First it conceptualizes a teamwork phenomenon that energizes innovation through scaffolded conflict. We also explore how this concept is enacted by engineering teams in two different cultural sites. Finally, we provide bottom-up strategies that can be implemented in other undergraduate engineering design programs.

Keywords

Engineering design Teams Conflict orchestration Socio-constructivism 

Notes

References

  1. Adams, R., Evangelou, D., English, L., De Figueiredo, A. D., Mousoulides, N., Pawley, A. L., et al. (2011). Multiple perspectives on engaging future engineers. Journal of Engineering Education,100(1), 48–88.CrossRefGoogle Scholar
  2. Akkerman, S. F., & Bakker, A. (2011). Boundary crossing and boundary objects. Review of Educational Research,81(2), 132–169.CrossRefGoogle Scholar
  3. Amabile, T. M. (1988). A model of creativity and innovation in organizations. In B. M. Staw & L. L. Cummins (Eds.), Research in organizational behavior (pp. 123–167). Greenwhich: JAI Press.Google Scholar
  4. Amason, A. C. (1996). Distinguishing the effects of functional and dysfunctional conflict on strategic decision making: Resolving a paradox for top management teams. Academy of Management Journal,39, 123–148.Google Scholar
  5. Amason, A. C., & Sapienza, H. J. (1997). The effects of top management team size and interaction norms on cognitive and affective conflict. Journal of Management,23, 495–516.CrossRefGoogle Scholar
  6. Amason, A. C., & Schweiger, D. M. (1994). Resolving the paradox of conflict, strategic decision making, and organizational performance. International Journal of Conflict Management,5(3), 239–253.CrossRefGoogle Scholar
  7. Ames, G. J., & Murray, F. B. (1982). When two wrongs make a right: Promoting cognitive change by social conflict. Developmental Psychology,18(6), 894.CrossRefGoogle Scholar
  8. Bell, N., Perret-Clermont, A. N., & Grossen, M. (1985). Sociocognitive conflict and intellectual growth. In M. W. Berkowitz (Eds.), Peer conflict and psychological growth. New directions for child development. San Francisco: Jossey-Bass.Google Scholar
  9. Borrego, M., Froyd, J. E., & Hall, T. S. (2010). Diffusion of engineering education innovations: A survey of awareness and adoption rates in U.S. engineering departments. Journal of Engineering Education,99(3), 185–207.CrossRefGoogle Scholar
  10. Borrego, M., Karlin, J., McNair, L. D., & Beddoes, K. (2013). Team effectiveness theory from industrial and organizational psychology applied to engineering student project teams: A research review. Journal of Engineering Education,102(4), 472–512.CrossRefGoogle Scholar
  11. Bourgeois, E. (2009). Apprentissage et transformation du sujet en formation. In J. C. R.-B. J. M. Barbier, E. Bourgeois, & G. Chapelle (Eds.), Encyclopédie de la formation (pp. 31–71). Paris: PUF.Google Scholar
  12. Bourgeois, E., & Nizet, J. (1997). Apprentissage et formation des adultes. Paris: Presses Universitaires de France.Google Scholar
  13. Bradley, B. H., Anderson, H. J., Baur, J. E., & Klotz, A. C. (2015). When conflict helps: Integrating evidence for beneficial conflict in groups and teams under three perspectives. Group Dynamics: Theory, Research, and Practice,19(4), 243.CrossRefGoogle Scholar
  14. Brannan, K., Dion, T., & Fallon, D. (1999). ABET engineering criteria 2000: Assessment of classroom instruction. In ASEE annual conference.Google Scholar
  15. Collins, H. M. (2010). Tacit and explicit knowledge. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
  16. Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice,39(3), 124–130.  https://doi.org/10.1207/s15430421tip3903_2.CrossRefGoogle Scholar
  17. Cropley, D. H. (2016). Creativity in engineering. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 155–173). London: Springer.CrossRefGoogle Scholar
  18. Davis, D., & Ulseth, R. (2013). Building student capacity for high performance teamwork. In ASEE annual conference (pp. 23–26). Atlanta, GA.Google Scholar
  19. DiDonato, N. C. (2013). Effective self- and co-regulation in collaborative learning groups: An analysis of how students regulate problem solving of authentic interdisciplinary tasks. Instructional Science,41(1), 25–47.CrossRefGoogle Scholar
  20. Dym, C. L., Agogino, A. M., Eris, O., Frey, D. F., & Leifer, L. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education,34(1), 103–120.CrossRefGoogle Scholar
  21. Følstad, A. (2008). Living labs for innovation and development of information and communication technology: A literature review. The Electronic Journal for Virtual Organizations and Networks,10(August), 99–131.Google Scholar
  22. Fominykh, M., Prasolova-Førland, E., Divitini, M., & Petersen, S. A. (2016). Boundary objects in collaborative work and learning. Information Systems Frontiers,18(1), 85–102.CrossRefGoogle Scholar
  23. Galison, P. (1999). Trading zone: Coordinating action and belief. In M. Biagioli (Ed.), The science studies reader (pp. 137–160). New York, NY: Routledge.Google Scholar
  24. Gaver, B., Dunne, T., & Pacenti, E. (1999). Cultural probes. Interactions,6(1), 21–29.CrossRefGoogle Scholar
  25. Genco, N., Hölttä-Otto, K., & Seepersad, C. C. (2012). An experimental investigation of the innovation capabilities of undergraduate engineering students. Journal of Engineering Education,101(1), 60–81.CrossRefGoogle Scholar
  26. Given, L. M. (2016). 100 questions (and answers) about qualitative research. Thousand Oaks, CA: Sage.Google Scholar
  27. Hadwin, A., & Oshige, M. (2011). Self-regulation, coregulation, and socially shared regulation: Exploring perspectives of social in self-regulated learning theory. Teachers College Record,113(2), 240–264.Google Scholar
  28. Halpern, M., Erickson, I., Forlano, L., & Gay, G. K. (2013). Designing collaboration: comparing cases exploring cultural probes as boundary-negotiating objects. In Proceedings of the 2013 conference on computer supported cooperative work (pp. 1093–1102). ACM.Google Scholar
  29. Hargadon, A. B., & Bechky, B. A. (2006). When collections of creatives become creative collectives: A field study of problem solving at work. Organization Science,17(4), 484–500.CrossRefGoogle Scholar
  30. Henriksen, M. (1997). An overview of ABET engineering criteria 2000. In ASEE annual conference. Milwaukee, WI.Google Scholar
  31. Jehn, K. (1994). Enhancing effectiveness: An investigation of advantages and disadvantages of value-based intragroup conflict. International Journal of Conflict Management,5, 223–238.CrossRefGoogle Scholar
  32. Jehn, K. (1995). A multimethod examination of the benefits and detriments of intragroup conflict. Administrative Science Quarterly,40, 256–282.CrossRefGoogle Scholar
  33. Jehn, K. (1997). Affective and cognitive conflict in work groups: Increasing performance through value-based intragroup conflict. In C. K. W. DeDreu & E. Van de Vliert (Eds.), Using conflict in organizations. London: Sage.Google Scholar
  34. Kolko, J. (2010). Abductive thinking and sensemaking: The drivers of design synthesis. Design Issues,26(1), 15–28.CrossRefGoogle Scholar
  35. Lissi, M. R., & Sebastián, C. (2016). El aprendizaje como proceso psicológico superior. Hacia una comprensión histórico-cultural del desarrollo del proceso de aprender. In Aprendizaje y educación: Contribuciones desde una perspectiva psicosocial. Santiago, Chile: Ediciones Universidad Alberto Hurtado.Google Scholar
  36. Meinel, C., & Leifer, L. (2011). Design thinking research. In H. Plattner, C. Meinel, & L. Leifer (Eds.), Design thinking: Understand-improve-apply (pp. 1–11). Berlin: Springer.CrossRefGoogle Scholar
  37. Miles, M., & Huberman, A. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks: Sage.Google Scholar
  38. Minneman, S. (1991). The social construction of a technical reality: Empirical studies of group engineering design practice. Menlo Park, CA: Stanford University.Google Scholar
  39. Miranda, C. (2013). Mapping visual negotiations in innovation driven teams: A peek into the design process culture of graduate engineering students (Doctoral dissertation, North Carolina State University). Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/8737.
  40. Mugny, G., de Paolis, P., & Carugati, F. (1984). Social regulations in cognitive development. In W. Doise & A. Palmonari (Eds.), Social interaction in individual development. New York: Pergamon.Google Scholar
  41. Newell, A., Shaw, J., & Simon, H. (1967). The process of creative thinking. In H. Gruber, G. Terrel, & M. Wertheimer (Eds.), Contemporary approaches to creative thinking (pp. 63–119). New York, NY: Literary Licensing.Google Scholar
  42. Panadero, E., & Järvelä, S. (2015). Socially shared regulation of learning: A review. European Psychologist,20(3), 190–203.CrossRefGoogle Scholar
  43. Paretti, M., Cross, K. J., & Matusovich, H. M. (2014). Match or mismatch: Engineering faculty beliefs about communication and teamwork versus published criteria. In ASEE annual conference. Indianapolis, IN.Google Scholar
  44. Perusich, K., Davis, B., & Taylor, K. (2010). Teamwork and ABET review: A template for assessment. In K. M. Iskander, V. Kapila (Eds.), Technological developments in education and automation (pp. 349–353). Dordrecht: Springer.CrossRefGoogle Scholar
  45. Piaget, J. (1970). Piaget’s theory. In P. H. Mussen (Ed.), Carmichael´s handbook of child psychology (pp. 703–731). New York, NY: Wiley.Google Scholar
  46. Pink, S. (2007). Doing visual ethnography. London, U.K.: Sage.CrossRefGoogle Scholar
  47. Polanyi, M. (1967). The tacit dimension. London, U.K.: Routledge & K. Paul.Google Scholar
  48. Prados, J. (1997). ABET engineering criteria 2000: How we got there and why. In ASEE annual conference. Milwaukee, WI.Google Scholar
  49. Psaltis, C., & Duveen, G. (2006). Social relations and cognitive development: The influence of conversation type and representations of gender. European Journal of Social Psychology,36(3), 407–430.CrossRefGoogle Scholar
  50. Purzer, S. (2011). The relationship between team discourse, self-efficacy, and individual achievement: A sequential mixed-methods study. Journal of Engineering Education,100(4), 655–679.CrossRefGoogle Scholar
  51. Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal,24(1), 92–96.CrossRefGoogle Scholar
  52. Sebastián, C. (2007). La diversidad interindividual como una oportunidad para el aprendizaje de los estudiantes de educación superior. Calidad En La Educación,26, 83–101.CrossRefGoogle Scholar
  53. Star, L. (2010). This is not a boundary object: Reflections on the origin of a concept. Science, Technology and Human Values,35(5), 601–617.CrossRefGoogle Scholar
  54. Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Social Studies of Science,19(3), 387–420.CrossRefGoogle Scholar
  55. Stark, D. (2010). The sense of dissonance: Accounts of worth in economic life. Princeton, NJ: Princeton University Press.Google Scholar
  56. Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin & Y. S. Lincoln (Eds.), The Sage Handbook of qualitative research (pp. 443–466). Thousand Oaks, CA: SAGE Publications.Google Scholar
  57. Turner, J. R. (2016). Team cognition conflict: A conceptual review identifying cognition conflict as a new team conflict construct. Performance Improvement Quarterly,29(2), 145–167.CrossRefGoogle Scholar
  58. Van De Ven, A. H. (1986). Central problems in the management of innovation. Management Science,32(5), 590–607.CrossRefGoogle Scholar
  59. Van den Bossche, P., Gijselaers, W., Segers, M., Woltjer, G., & Kirschner, P. (2011). Team learning: Building shared mental models. Instructional Science,39(3), 283–301.CrossRefGoogle Scholar
  60. Vigotsky, L. (1987). Thinking and speech. In R. W. Rieber, & A. S. Carton (Eds.), The collected works of L. S. Vygotsky (Vol. 1, pp. 39–285). New York: Plenum Press.Google Scholar
  61. Volkwein, J., Lattuca, L., & Terenzini, P. (2004). Engineering change: A study of the impact of EC2000. International Journal of Engineering Education,20(3), 318–328.Google Scholar
  62. Vollmer, A. (2015). Conflicts in innovation and how to approach the “last mile” of conflict management research—A literature review. International Journal of Conflict Management,26(2), 192–213.CrossRefGoogle Scholar
  63. Vygotsky, L. (1931). Historia del desarrollo de las funciones psíquicas superiores. In Obras Escogidas: Volumen 3. Problemas del desarrollo de la psique (pp. 11–340). Madrid, Spain: Aprendizaje - Visor/MEC.Google Scholar
  64. Warwick, P., Mercer, N., & Kershner, R. (2013). “Wait, let’s just think about this”: Using the interactive whiteboard and talk rules to scaffold learning for co-regulation in collaborative science activities. Learning, Culture and Social Interaction,2(1), 42–51.CrossRefGoogle Scholar
  65. Weick, K. E. (1995). Creativity and the aesthetics of imperfection. In C. M. Ford & D. A. Goia (Eds.), Creative action in organizations (pp. 187–192). Thousand Oaks, CA: Sage.Google Scholar
  66. Weick, K. E. (1998). Introductory essay: Improvisation as a mindset for organizational analysis. Organization Science,9(5), 543–555.CrossRefGoogle Scholar
  67. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry,17(2), 89–100.CrossRefGoogle Scholar
  68. Yildirim, T. P., Shuman, L., & Besterfield-Sacre, M. (2010). Model-eliciting activities: Assessing engineering student problem solving and skill integration processes. International Journal of Engineering Education,26(4), 831–845.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.DILAB School of EngineeringPontificia Universidad de ChileSantiagoChile
  2. 2.School of EngineeringPontificia Universidad de ChileSantiagoChile

Personalised recommendations