Gender-based motivational differences in technology education

  • Sonja Virtanen
  • Eija Räikkönen
  • Pasi Ikonen


Because of a deeply gendered history of craft education in Finland, technology education has a strong gender-related dependence. In order to motivate girls into pursuing technological studies and to enable them to see their own potential in technology, gender sensitive approaches should be developed in technology education. This study explores differences between girls’ and boys’ motivation towards technology education in primary school (grades one to six). A questionnaire was carried out with pupils in grades five and six (n = 281). An Explorative Factor Analysis was performed on statements of motivation, and the independent samples t test was used to examine gender differences in pupils’ motivation. Factor analyses showed that pupils’ motivation structure consisted of nine factors. The results also showed gender differences in most factors. Compared to boys, girls were significantly more interested in studying environment related issues. They also felt it fundamental to obtain support and encouragement from teachers. Additionally girls enjoyed more than boys making useful and decorative artefacts for their homes. In contrast, boys liked more than girls building electronic devices and, in general, cared what kinds of artefacts were made in craft lessons. Boys were more self-confident; felt that they could learn new things; felt very enthusiastic about craft lessons and felt it was fun to learn how to operate different tools. These findings reveal obvious gender-based differences in pupils’ motivation. Curriculum writers and teachers should therefore pay more attention to girls to assist them with seeing the relevance of technology in their everyday lives as well as technology related careers.


Technology education Motivation Gender Primary school Factor analysis 


  1. Alamäki, A. (1999). How to educate students for a technological future: Technology education in early childhood and primary education. Publications of the University of Turku, Annalesis Universitas Turkuensis. Series B: 233.Google Scholar
  2. Ardies, J., De Maeyer, S., & Gijbels, D. (2013). Reconstructing the pupils attitude towards technology survey. Design and Technology Education: An International Journal, 18(1), 8–19.Google Scholar
  3. Autio, O., Hietanoro, J., & Ruismäki, H. (2011). Taking part in technology education: Elements in students’ motivation. International Journal of Technology and Design Education, 21(3), 349–361.CrossRefGoogle Scholar
  4. Berg, P., Guttorm, H., Kankkunen, T., Kokko, S., Kuoppamäki, A., Lepistö, J., et al. (2011). Tytöille tyttömäistä ja pojille poikamaista—Yksilöllisten valintojen viidakossa? Sukupuolitietoisuus taito- ja taideaineiden opetuksessa ja tutkimuksessa. [Girly for the girls and boyish for the boys—in the jungle of individual choices? Gender awareness in teaching and research of art and skill subjects]. In J. Lehtonen (Ed.), Sukupuolinäkökulmia tutkimusperustaiseen opettajankoulutukseen. Helsinki: University of Helsinki.Google Scholar
  5. Cohen, J. (1977). Statistical power analysis for behavioral sciences, (revised ed). New York: Academic Press.Google Scholar
  6. Committee on Alleviation of Segregation (2010). Ministry of Education and Culture Working Group Memoranda and Investigations. 2010:18.Google Scholar
  7. Compton, V. (2013). Developing technological literacy: A long and winding road. In J. Hallström & C. Klasander (Eds.), The Ginner handbook of technology education: Some theses about technology, school and society. CETIS: Linköping University.Google Scholar
  8. Dakers, J. R., Dow, W., & McNamee, L. (2009). De-constructing technology’s masculinity. International Journal of Technology and Design Education, 19(4), 381–391.CrossRefGoogle Scholar
  9. de Vries, M. J. (2005). Teaching about technology: An Introduction to the philosophy of technology for non-philosophers. Dordrecht: Springer.Google Scholar
  10. De Weerd, J., & Rommes, E. (2012). To beta or not to beta? The role of teachers in the gendered choice of science and technology by secondary school students. In C. Quaiser-Pohl & M. Endepohls-Ulpe (Eds.), Women’s choices in Europe: Influence of gender on education, occupational career and family development (pp. 63–78). Münster: Waxmann.Google Scholar
  11. Endepohls-Ulpe, M., Ebach, J., Seiter, J., & Kaul, N. (2012). Barriers and motivational factors for taking up a career in a technological field in Germany and Austria. In C. Quaiser-Pohl & M. Endepohls-Ulpe (Eds.), Women’s choices in Europe: Influence of gender on education, occupational career and family development (pp. 79–93). Münster: Waxmann.Google Scholar
  12. Framework Curriculum for the Comprehensive School. (1994). FCCS 1994. Helsinki: State Printing Press and National Board of Education.Google Scholar
  13. Hynninen, P. & Juutilainen, P-K. (2006). Seitsemän asiaa ohjauksen suunnittelusta ja tasa-arvosta. Sukupuolisensitiivinen ohjaus tasa-arvon edistäjänä koulutuksessa -hanke 2002–2006. [Seven facts related to study guidance and gender equality.] Joensuun yliopisto. University of Joensuu. Kasvatustieteiden tiedekunnan opetusmonisteita 43.Google Scholar
  14. Hytti, U., Stenholm, P., Heinonen, J., & Seikkula-Leino, J. (2010). Perceived learning outcomes in entrepreneurship education: The impact of student motivation and team behaviour. Education+Training, 52(8), 587–606.Google Scholar
  15. Jakku-Sihvonen, R. (2013). Sukupuolenmukaista vaihtelua koululaisten oppimistuloksissa ja asenteissa. [Gender-based variation in pupils’ learning outcomes and attitudes]. Koulutuksen seurantaraportit 2013:5. Finnish National Board of Education.Google Scholar
  16. Järvinen, E-M. & Rasinen, A. (2012). Ihminen ja teknologia. In E. K. Niemi (Ed.) Aihekokonaisuuksien tavoitteiden toteutumisen seuranta-arviointi 2010. [Follow-up evaluation of cross-curriculum themes in 2010]. Koulutuksen seurantaraportit 2012:1. Finnish National Board of Education.Google Scholar
  17. Johnson, D. W., & Johnson, R. T. (1985). Motivational processes in cooperative, competitive, and individualistic learning situations. In C. Ames & R. Ames (Eds.), Research on motivation in education. The classroom milieu. Volume 2. London: Academic Press Inc.Google Scholar
  18. Kokko, S. (2007). Käsityöt tyttöjen kasvatuksessa naisiksi. [The road to womanhood through gender-specific crafts]. Joensuun yliopisto. University of Joensuu. Joensuun yliopiston kasvatustieteellisiä julkaisuja, no 118.Google Scholar
  19. Kokko, S. (2008). Sitkeästi sukupuolittunut käsityönopetus. [Gender-related persistent craft education]. Kasvatus [Education], 4, 348–358.Google Scholar
  20. Kosonen, E. (1996). Soittamisen motivaatio varhaisnuorilla. [Motivation for instrument playing in early youth] University of Jyväskylä. Licentiate thesis in music education.
  21. Kosonen, E. (2010). Musiikkiharrastusten motivaatio. [Motivation for music hobbies]. In J. Louhivuori & S. Saarikallio (Eds.), Musiikkipsykologia [Music psychology] (pp. 295–310). Jyväskylä: Atena.Google Scholar
  22. Mawson, B. (2010). Children’s developing understanding of technology. International Journal of Technology and Design Education, 20(1), 1–13.CrossRefGoogle Scholar
  23. Murphy, P. (2006). Gender and technology. Gender mediation in school knowledge construction. In J. R. Dakers (Ed.), Defining technological literacy: Towards an epiological framework (pp. 219–237). New York: Palgrave MacMillan.Google Scholar
  24. National Core Curriculum for Basic Education. (2004). NCCBE 2004. Helsinki: The Finnish National Board of Education.Google Scholar
  25. Pintrich, P. R., & Ruohotie, P. (2000). Conative constructs and self-regulated learning. Hämeenlinna: Research Centre for Vocational Education.Google Scholar
  26. Pulkkinen, T. (2013). Teknillistieteellinen opetus ja tutkimus. Women in Tech seminar. Espoo., 15(10), 2013.Google Scholar
  27. Quaiser-Pohl, C. (2012). Women’s choices in STEM–statistical data and theoretical approaches explaining the gender gap. In C. Quaiser-Pohl & M. Endepohls-Ulpe (Eds.), Women’s choices in Europe: Influence of gender on education, occupational career and family development (pp. 53–61). Münster: Waxmann.Google Scholar
  28. Quaiser-Pohl, C., & Endepohls-Ulpe, M. (2012). Education, occupational career and family work—similarities and differences in women’s choices in Europe (Editorial). In C. Quaiser-Pohl & M. Endepohls-Ulpe (Eds.), Women’s choices in Europe: Influence of gender on education, occupational career and family development (pp. 7–13). Münster: Waxmann.Google Scholar
  29. Rasinen, A., Ikonen, P., & Rissanen, T. (2006). Are girls equal in technology education? In M. J. De Vries & I. Mottier (Eds.), International handbook of technology education: Reviewing the past twenty years (pp. 449–461). Rotterdam: Sense Publishers.Google Scholar
  30. Rasinen, A., Ikonen, P., & Rissanen, I. (2011). Technology education in Finnish comprehensive schools. In C. Benson & J. Lunt (Eds.), International handbook of primary technology education: Reviewing the past twenty years (pp. 97–105). Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  31. Rasinen, A., Virtanen, S., Endepohls-Ulpe, M., Ikonen, P., Ebach, J., & Stahl-von Zabern, J. (2009). Technology education for children in primary schools in Finland and Germany: different school systems, similar problems and how to overcome them. International Journal of Technology and Design Education, 19(4), 368–379.CrossRefGoogle Scholar
  32. Reeve, J., Bolt, E., & Cai, Y. (1999). Autonomy-supportive teachers: How they teach and motivate students. Journal of Educational Psychology, 91, 537–548.Google Scholar
  33. Rust, L. W. (1977). Interests. In S. Ball (Ed.), Motivation in education (Educational Psychology).. London: Academic Press Inc.Google Scholar
  34. Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67.Google Scholar
  35. Seiter, J. (2009). “Crafts and technology” and “technical education” in Austria. International Journal of Technology and Design Education, 19(4), 419–429.CrossRefGoogle Scholar
  36. Shachar, H., & Fischer, S. (2004). Cooperative learning and the achievement of motivation and perceptions of students in the 11th chemistry classes. Learning and Instruction, 14(1), 69–87.Google Scholar
  37. She Figures (2012). Gender in research and innovation. Statistics and indicators. European Commission.
  38. Soini, M., Liukkonen, J., Watt, A., Yli-Piipari, S., & Jaakkola, T. (2014). Factorial validity and internal consistency of the motivational climate in physical education scale. Journal of Sports Science and Medicine, 13, 137–144.Google Scholar
  39. Turja, L., Endepohs-Ulpe, M., & Chatoney, M. (2009). A conceptual framework for developing the curriculum and delivery of technology education in early childhood. International Journal of Technology and Design Education, 19(4), 353–365.CrossRefGoogle Scholar
  40. Virtanen, S. (2012). Searching for ways to encourage and enable equal access for girls to study technology. In C. Quaiser-Pohl & M. Endepohls-Ulpe (Eds.), Women’s choices in Europe: Influence of gender on education, occupational career and family development (pp. 95–106). Münster: Waxmann.Google Scholar
  41. Virtanen, S., & Ikonen, P. (2011). Searching for ways to encourage girls to study technology in primary education. In K. Stables, C. Benson, & M. de Vries (Eds.), PATT25: CRIPT8. Perspectives on learning in design and technology Education (pp. 393–398). London: Goldsmiths, University of London.Google Scholar
  42. Wakamoto, S. (2012). Scientific research (B) creative and pioneering research conducted by a researcher or a group of researchers. Project no. 20330187. Japan: Hiroshima University.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of EducationUniversity of JyväskyläJyväskyläFinland

Personalised recommendations