Impact of text on idea generation: an electroencephalography study

  • Lingyun Sun
  • Wei Xiang
  • Chunlei Chai
  • Changlu Wang
  • Zheng Liu
Article

Abstract

Sketching is widely used as a creative tool, playing a significant role in industrial design. Designers commonly use sketching to generate and evaluate ideas, leading to subsequent development of the most promising ideas. The current study examined the use of text in the idea generation sketching process among novices and experts. The electrophysiological correlates of thought processes were measured using electroencephalography (EEG). The thought process involved in idea generation was coded according to working memory components, and sketches were scored. The results revealed that experts generated better quality ideas, using similar thought processes. Importantly, the use of text increased the number of creative elements in ideas with lower creative quality among both novices and seniors. Electrophysiological analysis revealed that EEG signals corresponded with this behavioral pattern. Novices showed an activation pattern of low creativity, and the use of text activates the right hemisphere. Overall, the results revealed that the quality of concepts stored in memory was associated with a difference in quality between experts and novices, and that text elicited a higher volume of diverse analytical thinking that helped broaden creative possibilities rather than improving creative quality.

Keywords

Idea generation Textual description EEG Sketch 

References

  1. Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359–379.CrossRefGoogle Scholar
  2. Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), doi:10.1016/s1364-6613(00)01538-2.
  3. Benedek, M., Bergner, S., Koenen, T., Fink, A., & Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49(12), 3505–3511. doi:10.1016/j.neuropsychologia.2011.09.004.CrossRefGoogle Scholar
  4. Bilda, Z., & Gero, J. S. (2007). The impact of working memory limitations on the design process during conceptualization. Design Studies, 28(4), 343–367. doi:10.1016/j.destud.2007.02.005.CrossRefGoogle Scholar
  5. Bilda, Z., & Gero, J. S. (2008). Idea development can occur using imagery only. In Design computing and cognition ‘08 (pp. 303–320). doi:10.1007/978-1-4020-8728-8_16.
  6. Damle, A., & Smith, P. J. (2009). Biasing cognitive processes during design: the effects of color. Design Studies, 30(5), 521–540. doi:10.1016/j.destud.2009.01.001.CrossRefGoogle Scholar
  7. Danko, S., Starchenko, M., & Bechtereva, N. (2003). EEG local and spatial synchronization during a test on the insight strategy of solving creative verbal tasks. Human Physiology, 29, 129–132. doi:10.1023/A:1024950028210.Google Scholar
  8. Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822–848. doi:10.1037/a0019749.CrossRefGoogle Scholar
  9. Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42(1), 68–76. doi:10.1016/j.ymeth.2006.12.001.CrossRefGoogle Scholar
  10. Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009a). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30(3), 734–748. doi:10.1002/hbm.20538.CrossRefGoogle Scholar
  11. Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. Neuroimage, 52(4), 1687–1695. doi:10.1016/j.neuroimage.2010.05.072.CrossRefGoogle Scholar
  12. Fink, A., Graif, B., & Neubauer, A. C. (2009b). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neuroimage, 46(3), 854–862. doi:10.1016/j.neuroimage.2009.02.036.CrossRefGoogle Scholar
  13. Funayama, E. S., Grillon, C., Davis, M., & Phelps, E. A. (2001). A double dissociation in the affective modulation of startle in humans: Effects of unilateral temporal lobectomy. Journal of Cognitive Neuroscience, 13(6), doi:10.1162/08989290152541395.
  14. Goldschmidt, G., & Sever, A. L. (2011). Inspiring design ideas with texts. Design Studies, 32(2), 139–155. doi:10.1016/j.destud.2010.09.006.CrossRefGoogle Scholar
  15. Goldschmidt, G., & Smolkov, M. (2006). Variances in the impact of visual stimuli on design problem solving performance. Design Studies, 27(5), 549–569. doi:10.1016/j.destud.2006.01.002.CrossRefGoogle Scholar
  16. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), doi:10.1016/0166-2236(92)90344-8.
  17. Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. (Article). Behavioral Neuroscience, 121(1), 224–230. doi:10.1037/0735-7044.121.1.224.CrossRefGoogle Scholar
  18. Horan, R. (2009). The neuropsychological connection between creativity and meditation. Creativity Research Journal, 21(2–3), 199–222. doi:10.1080/10400410902858691.CrossRefGoogle Scholar
  19. Israel, J. H., Wiese, E., Mateescu, M., Zollner, C., & Stark, R. (2009). Investigating three-dimensional sketching for early conceptual design-results from expert discussions and user studies. Computers & Graphics-Uk, 33(4), 462–473. doi:10.1016/j.cag.2009.05.005.CrossRefGoogle Scholar
  20. Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84(2), 219–225. doi:10.1016/j.ijpsycho.2012.02.012.CrossRefGoogle Scholar
  21. Jin, Y., & Chusilp, P. (2006). Study of mental iteration in different design situations. Design Studies, 27(1), doi:10.1016/j.destud.2005.06.003.
  22. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., & Greenblatt, R., et al. (2004). Neural activity when people solve verbal problems with insight. Plos Biology, 2(4), doi:10.1371/journal.pbio.0020097.
  23. Kavakli, M., & Gero, J. S. (2001). Sketching as mental imagery processing. Design Studies, 22(4), 347–364.CrossRefGoogle Scholar
  24. Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281–291. doi:10.1016/j.neuropsychologia.2007.07.013.CrossRefGoogle Scholar
  25. Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., & Parrish, T. B., et al. (2006). The prepared mind—neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), doi:10.1111/j.1467-9280.2006.01798.x.
  26. Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., et al. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30(5), 1678–1690. doi:10.1002/hbm.20633.CrossRefGoogle Scholar
  27. Lindell, A. K. (2011). Lateral thinkers are not so laterally minded: Hemispheric asymmetry, interaction, and creativity. Laterality, 16(4), 479–498. doi:10.1080/1357650x.2010.497813.Google Scholar
  28. Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2). doi:10.1038/nrn1603.
  29. Petsche, H., Kaplan, S., vonStein, A., & Filz, O. (1997). The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks. International Journal of Psychophysiology, 26(1–3), 77–97. doi:10.1016/s0167-8760(97)00757-5.CrossRefGoogle Scholar
  30. Pfurtscheller, G. (1999). Quantification of ERD and ERS in the time domain. In G. Pfurtscheller & F. H. Lopes da Silva (Eds.), Event-related desynchronization: Handbook of electroencephalography and clinical neurophysiology revised edition (pp. 89–105). Amsterdam: Elsevier.Google Scholar
  31. Phelps, E. A., O’Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4(4). doi:10.1038/86110.
  32. Purcell, A. T., & Gero, J. S. (1992). Effects of examples on the results of a design activity. Knowledge-Based Systems, 5(1), 82–91. doi:10.1016/0950-7051(92)90026-c.CrossRefGoogle Scholar
  33. Razoumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cognitive Brain Research, 10(1–2). doi:10.1016/s0926-6410(00)00017-3.
  34. Razumnikova, O. M. (2007). Creativity related cortex activity in the remote associates task. Brain Research Bulletin, 73(1–3), 96–102. doi:10.1016/j.brainresbull.2007.02.008.CrossRefGoogle Scholar
  35. Sato, T., & Sai, T. (2010). Characteristics of the power of the three EEG alpha sub-bands in verbal creativity tasks: Comparison with the characteristics of the power of the three sub-bands in an arithmetic task. International Journal of Psychophysiology, 77(3), 299–300. doi:10.1016/j.ijpsycho.2010.06.189.CrossRefGoogle Scholar
  36. Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 57(2), 97–103. doi:10.1016/j.ijpsycho.2005.03.018.CrossRefGoogle Scholar
  37. Sawyer, K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research Journal, 23(2), 137–154. doi:10.1080/10400419.2011.571191.CrossRefGoogle Scholar
  38. Shah, J. J., Vargas-Hernandez, N., Summers, J. D., & Kulkarni, S. (2001). Collaborative sketching (C-Sketch)—an idea generation technique for engineering design. Journal of Creative Behavior, 35(3), 168–198.CrossRefGoogle Scholar
  39. Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178–185. doi:10.1016/j.neuropsychologia.2010.11.020.CrossRefGoogle Scholar
  40. Shemyakina, N. V., Nagornova, Z. V., & Danko, S. G. (2009). What do we measure—creativity or task complexity? Psychophysiology, 46, S51.Google Scholar
  41. Soygenis, S., Soygenis, M., & Erktin, E. (2010). Writing as a tool in teaching sketching: Implications for architectural design education. International Journal of Art & Design Education, 29(3), 283–293. doi:10.1111/j.1476-8070.2010.01646.x.CrossRefGoogle Scholar
  42. Suwa, M., Purcell, T., & Gero, J. (1998). Macroscopic analysis of design processes based on a scheme for coding designers’ cognitive actions. Design Studies, 19(4), 455–483.CrossRefGoogle Scholar
  43. Tang, H. H., Lee, Y. Y., & Gero, J. S. (2011). Comparing collaborative co-located and distributed design processes in digital and traditional sketching environments: A protocol study using the function-behaviour-structure coding scheme. Design Studies, 32(1), 1–29. doi:10.1016/j.destud.2010.06.004.CrossRefGoogle Scholar
  44. Taylor, K. (2001). Applying continuous modelling to consciousness. Journal of Consciousness Studies, 8(2), 45–60.Google Scholar
  45. Tovey, M., Portera, S., & Newmanb, R. (2003). Sketching, concept development and automotive design. Design Studies, 24(2), 135–153.CrossRefGoogle Scholar
  46. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Engle, M. A. Goodale, & R. J. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  47. Williams, C. B., Lee, Y. S., Paretti, M. C., Gero, J. S., & IEEE. (2011). Effects of design education on design cognition: A preliminary study of a sophomore design course. In 41st annual Frontiers in education conference (FIE), Rapid City, SD, Oct 12–15 2011: IEEE.Google Scholar
  48. Yilmaz, S., & Seifert, C. M. (2011). Creativity through design heuristics: A case study of expert product design. Design Studies, 32(4), 384–415. doi:10.1016/j.destud.2011.01.003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lingyun Sun
    • 1
  • Wei Xiang
    • 1
  • Chunlei Chai
    • 1
  • Changlu Wang
    • 1
  • Zheng Liu
    • 2
  1. 1.Modern Industrial Design InstituteZhejiang UniversityHangzhouChina
  2. 2.School of DesignChina Academy of ArtHangzhouChina

Personalised recommendations