Advertisement

International Tax and Public Finance

, Volume 19, Issue 3, pp 442–461 | Cite as

Measuring the balance of government intervention on forward and backward family transfers using NTA estimates: the modified Lee arrows

  • Concepció Patxot
  • Elisenda RenteríaEmail author
  • Miguel Sánchez Romero
  • Guadalupe Souto
Article

Abstract

In this paper we propose a way to measure the degree of government intervention on forward—from parents to children—and backward—from adult children to elderly parents—intergenerational family transfers (IFT). We carry out a discussion about the possibility of using Generational Accounts (GA) and National Transfer Accounts (NTA) methodologies to generate indicators that could measure government intervention on both sides of IFT. As a result, we propose a modification of arrow diagrams used by Lee (in J. Human Res. 29:1027–1063, 1994b). An illustration of the results in the Spanish case indicates that the degree of government intervention on backward IFT is above that on forward IFT. This could be one of the main reasons to explain the Spanish low fertility rate.

Keywords

National transfers accounts Generational accounting Fiscal policy Spain Population ageing 

Abbreviations

PAYG

pay-as-you-go

NTA

National Transfers Accounts

GA

Generational Accounts

IFT

Intra Family transfers

OLG

Over Lapping Generation

LCD

Life Cycle Deficit

TG

Public Transfers

TF

Private Transfers

ABR

Asset Based Reallocations

SNA

System of National Accounts

GDP

Gross Domestic Product

JEL Classification

H68 H53 J180 

Notes

Acknowledgements

This research received institutional support from the Spanish Science and Technology System (Projects No. ECO2009-10003 and ECO2008-04997/ECON), the Catalan Government Science network (Projects No. SGR2009-600 and SGR2009-359 as well as from XREPP—Xarxa de Referência en Economia e Polítiques Públiques) and the Fulbright Commission (reference number 2007-0445).

References

  1. Abío, G., Mahieu, G., & Patxot, C. (2004). On the optimality of PAYG pension systems in an endogenous fertility setting. Journal of Pension Economics and Finance, 3(1), 35–62. CrossRefGoogle Scholar
  2. Auerbach, A., & Lee, R. (2009). Welfare and generational equity in sustainable unfunded pension systems. NBER working paper, w14682, January. Google Scholar
  3. Auerbach, A., Gokhale, J., & Kotlikoff, L. (1991). Generational accounting: a meaningful alternative to deficit accounting. Tax Policy and the Economy, 5, 55–110. Google Scholar
  4. Auerbach, A., Gokhale, J., & Kotlikoff, L. (1992). Generational accounting: a new approach to understanding the effects of fiscal policy. The Scandinavian Journal of Economics, 94, 303–318. CrossRefGoogle Scholar
  5. Auerbach, A., Gokhale, J., & Kotlikoff, L. (1994). Generational accounting: a meaningful way to evaluate fiscal policy. Journal of Economic Perspectives, 8(4), 73–94. CrossRefGoogle Scholar
  6. Auerbach, A., Kotlikoff, L., & Leibfritz, W. (1999). Generational accounting around the World. Chicago: University of Chicago Press. Google Scholar
  7. Bental, B. (1989). The old age security hypothesis and optimal population growth. Journal of Population Economics, 1(4), 285–301. CrossRefGoogle Scholar
  8. Bommier, A., & Lee, R. (2003). Overlapping generations models with realistic demography. Journal of Population Economics, 16, 135–160. CrossRefGoogle Scholar
  9. Bonin, H. (2001). Generational accounting: theory and application. Berlin: Springer. Google Scholar
  10. Bonin, H., & Patxot, C. (2005). La Contabilidad Generacional como una herramienta de análisis de la sostenibilidad fiscal: panorama de la metodología. In E. Berenguer, et al. (Ed.), Contabilidad Generacional en España, Estudios de Hacienda Pública, Instituto de Estudios Fiscales. Google Scholar
  11. Cigno, A. (1993). Intergenerational transfers without altruism. European Journal of Political Economy, 9, 505–518. CrossRefGoogle Scholar
  12. Cigno, A., & Luporini, A. (2006). Optimal policy towards families with different amounts of social capital, in the presence of asymmetric information and stochastic fertility. CESifo working paper, 1664:1–28. Google Scholar
  13. Crèmer, H., Gahvari, F., & Pestieau, P. (2006). Pensions with endogenous and stochastic fertility. Journal of Public Economics, 90, 2303–2321. CrossRefGoogle Scholar
  14. Diamond, P. (1965). National debt in a neoclassical growth model. American Economic Review, 55, 1126–1150. Google Scholar
  15. Eckstein, Z., & Wolpin, K. I. (1985). Endogenous fertility and optimal population size. Journal of Public Economics, 27, 93–106. CrossRefGoogle Scholar
  16. Galor, O., & Weil, D. (2000). Population, technology and growth from the Malthusian regime to the demographic transition. American Economic Review, 90, 806–828. CrossRefGoogle Scholar
  17. Jimeno, J. F., Rojas, J., & Puente, S. (2008). Modelling the impact of aging on social security expenditures. Economic Modelling, 25(2), 201–224. CrossRefGoogle Scholar
  18. Kolmar, M. (1997). Intergenerational redistribution in a small open economy with endogenous fertility. Journal of Population Economics, 10, 161–183. CrossRefGoogle Scholar
  19. Kolmar, M. (2001). Optimal intergenerational redistribution in a two-country model with endogenous fertility. Public Choice, 106, 23–51. CrossRefGoogle Scholar
  20. Lee, R. D. (1994a). The formal demography of population aging, transfers, and the economic life cycle. In L. G. Martin & S. H. Preston (Eds.), Demography of aging (pp. 8–49). Washington: National Academy Press. Google Scholar
  21. Lee, R. D. (1994b). Population, age structure, intergenerational transfers, and wealth: a new approach, with applications to the US. The Journal of Human Resources, 29(4), 1027–1063. CrossRefGoogle Scholar
  22. Lee, R., & Mason, A. (2004). Macroeconomic demography of intergenerational transfers. National transfer accounts working paper n. 1. http://www.ntaccounts.org/doc/repository/LM2004.pdf.
  23. Lee, R., & Mason, A. (2011). Population aging and the generational economy: a global perspective. Cheltenham: Edward Elgar. Google Scholar
  24. Mason, A. (2007). Demographic dividends: the past, the present, and the future. In M. Yamaguchi (Ed.), Contributions to economic analysis: Vol. 281. Population change, labor markets and sustainable growth: towards a new economic paradigm (pp. 75–98). Bingley: Emerald Group. CrossRefGoogle Scholar
  25. Mason, A., & Lee, R. (2011). Introducing age into national accounts. In R. Lee & A. Mason (Eds.), Population aging and the generational economy: a global perspective. Cheltenham: Edward Elgar. Google Scholar
  26. Patxot, C., & Farré, R. (2007). Evaluación de la sostenibilidad del estado del bienestar en España. Madrid: Ediciones 2010. Google Scholar
  27. Patxot, C., Rentería, E., Romero, M., & Souto, G. (2010). How intergenerational transfers finance lifecycle deficit in Spain, NTA working paper series, No. 10-04, available at http://www.ntaccounts.org, accessed 24 September 2010.
  28. Patxot, C. Rentería, E., Sánchez-Romero, M., & Souto, G. (2011a). How intergenerational transfers finance the lifecycle deficit in Spain. In R. Lee, & A. Mason (Eds.), Population aging and the generational economy: a global perspective. Cheltenham: Edward Elgar. Google Scholar
  29. Patxot, C., Rentería, E., Sánchez-Romero, M., & Souto, G. (2011b). Integrated results for GA and NTA for Spain: some implications for the sustainability of welfare state. Moneda y Crédito, 231, 7–51. Google Scholar
  30. Peters, W. (1995). Public pensions, family allowances and endogenous demographic change. Journal of Population Economics, 8, 161–183. CrossRefGoogle Scholar
  31. Rangel, A. (2003). Forward and backward intergenerational goods: why is social security good for the environment? American Economic Review, 93(3), 813–834. CrossRefGoogle Scholar
  32. Samuelson, P. A. (1975). The optimum growth rate for population. International Economic Review, 16, 531–538. CrossRefGoogle Scholar
  33. Schweizer, U. (1996). Endogenous fertility and the Henry George theorem. Journal of Public Economics, 61, 209–228. CrossRefGoogle Scholar
  34. Sinn, H.-W. (2000). Why a funded system is useful and why it is not useful. International Tax and Public Finance, 7, 389–410. CrossRefGoogle Scholar
  35. Sinn, H.-W. (2004). The pay-as-you-go pension system as fertility insurance and an enforcement device. Journal of Public Economics, 88(7–8), 1335–1357. CrossRefGoogle Scholar
  36. Wigger, B. U. (1999). Pay-as-you-go financed public pensions in a model of endogenous growth and fertility. Journal of Population Economics, 12, 625–640. CrossRefGoogle Scholar
  37. Willis, R. J. (1988). Life cycles institutions population growth: a theory of the equilibrium interest rate in an overlapping-generations model. In R. D. Lee, W. B. Arthur, & G. Rodgers (Eds.), Economics of changing age distributions in developed countries (pp. 106–138). Oxford: Oxford University Press. Google Scholar
  38. Zhang, J., & Nishimura, K. (1993). Old-age security hypothesis reconsidered. Journal of Development Economics, 41, 191–202. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Concepció Patxot
    • 1
  • Elisenda Rentería
    • 2
    Email author
  • Miguel Sánchez Romero
    • 3
  • Guadalupe Souto
    • 4
  1. 1.Universitat de Barcelona and Instituto de Estudios FiscalesBarcelonaSpain
  2. 2.Universitat de BarcelonaBarcelonaSpain
  3. 3.Max Planck Institute for Demographic ResearchRostockGermany
  4. 4.Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations