Information Systems Frontiers

, Volume 20, Issue 6, pp 1363–1379 | Cite as

Crowdsourcing roles, methods and tools for data-intensive disaster management

  • Marta PobletEmail author
  • Esteban García-Cuesta
  • Pompeu Casanovas


Mobile technologies, web-based platforms, and social media have transformed the landscape of disaster management by enabling a new generation of digital networks to produce, process, and analyse georeferenced data in real time. This unprecedented convergence of geomobile technologies and crowdsourcing methods is opening up multiple forms to participate in disaster management tasks. Based on empirical research, this paper first proposes a conceptualisation of crowdsourcing roles and then analyses methods and tools based on a combination of two variables: (i) types of data being processed; (ii) involvement of the crowds. The paper also surveys a number of existing platforms and mobile apps leveraging crowdsourcing in disaster and emergency management with the aim to contribute to the discussion on the advantages and limits of using crowdsourcing methods and tools in these areas.


Disaster management Crowdsourcing Microtasking Data management Online platforms Mobile technologies Ontologies 



The research leading to this paper has been supported by two research grants from the Spanish Ministry of Economy and Competitiveness (MINECO) to the projects ‘CrowdCrisisControl’ (IPT-2012-0968-390000) and ‘Meta-rule of law’, DER2016-78108-P. The work has also been supported by the project ‘Data to Decisions CRC’ funded by the Department of Industry and Science of the Australian Government. The authors are very grateful to the anonymous reviewers of the manuscript for their comments and suggestions.


  1. Abel, F., Hauff, C., Houben, G.J., Stronkman, R., & Tao, K. (2012). Twitcident: fighting fire with information from social web streams. Proceedings of the 21st International Conference on World Wide Web: 305–308.Google Scholar
  2. Apisakmontri, P., Nantajeewarawat, E., Ikeda, M., & Buranarach, M. (2016). An ontology-based framework for semantic reconciliation in humanitarian aid in emergency information systems. Journal of Information Processing, 24(1), 73–82.CrossRefGoogle Scholar
  3. Apisakmontri, P., Nantajeewarawat, E., Buranarach, M. & Ikeda, M. (2013). Towards the use of upper ontologies for refugee emergencies in disaster management. In the Second Asian Conference on Information Systems, available at:
  4. Aulinger, A., & Miller, L. (2014). Collective intelligence versus team intelligence. In Proceedings of the Collective Intelligence Conference (MIT, June 10–12, 2014).Google Scholar
  5. Babitski, G., Bergweiler, S., Grebner, O., Oberle, D., Paulheim, H., & Probst, F. (2011). SoKNOS–using semantic technologies in disaster management software. In L. Aroyo, P. Traverso, F. Ciravegna, Ph. Cimiano, T. Heath, E. Hyvönen, R. Mizoguchi, E. Oren, M. Sabou, E. Simperl (Eds.), The semanic web: Research and applications (pp. 183–197). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  6. Babitski, G., Bergweiler, S., Hoffmann, J., Schön, D., Stasch, C., & Walkowski, A. C. (2009). Ontology-based integration of sensor web services in disaster management. In K. Janowicz, M. Raubal, S. Levashkin (Eds.), GeoSpatial semantics (pp. 103–121). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  7. Bailard, C., Baker, R., Hindman, M., Livingston, S., & Meier, P. (2012). Mapping the maps: A meta-level analysis of ushahidi and Crowdmap. Washington DC: Internews Center for Innovation & Learning.Google Scholar
  8. Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., & Schwinger, W. (2010). BeAware!—situation awareness, the ontology-driven way. Data & Knowledge Engineering, 69(11), 1181–1193.CrossRefGoogle Scholar
  9. Baumgartner, N., & Retschitzegger, W. (2006). A survey of upper ontologies for situation awareness. In Proc. of the 4th IASTED International Conference on Knowledge Sharing and Collaborative Engineering, St. Thomas, US VI, 1–9.Google Scholar
  10. Bæhr, I. (2016). Sharing geo-information for humanitarian response and disaster management. Geoforum Perspektiv, 14(26).Google Scholar
  11. Birenboim, A., & Shoval, N. (2016). Mobility research in the age of the smartphone. Annals of the American Association of Geographers, 106(2), 283–291.Google Scholar
  12. Boulos, M. N., Resch, B., Crowley, D. N., Breslin, J. G., Sohn, G., Burtner, R., Pike, W. A., Jezierski, E., & Chuang, K. Y. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples. International Journal of Health Geographics, 10(1), 1.CrossRefGoogle Scholar
  13. Bunker, D., Levine, L., & Woody, C. (2015). Repertoires of collaboration for common operating pictures of disasters and extreme events. Information Systems Frontiers, 17(1), 51–65. doi: 10.1007/s10796-014-9515-4.CrossRefGoogle Scholar
  14. Cameron, M.A., Power, R., Robinson, B., & Yin, J., (2012). Emergency awareness from twitter for crisis management. In Proceedings of the 21st international conference companion on World Wide Web (pp. 695–698), available at:
  15. Caragea, C., McNeese, N., Jaiswal, A., Traylor, G., Kim, H.W., Mitra, P., Wu, D., Tapia, A.H., Giles, L., Jansen, B., & Yen, J., (2011). Classifying text messages for the Haiti earthquake. In Information Systems for Crisis Response and Management, ISCRAM.Google Scholar
  16. Casanovas, P., & Poblet, M. (2008). Concepts and fields of relational justice (pp. 323–339). Berlin Heidelberg: Springer.Google Scholar
  17. Casanovas, P. (2009). The future of law: Relational justice, web services and second-generation semantic web. The future of law and technology (pp. 137–156). Florence: European Press Academic Publishing.Google Scholar
  18. Casanovas, P., Palmirani, M., Peroni, S., van Engers, T., & Vitali, F. (2016). Special issue on the semantic web for the legal domain guest editors’ editorial: the next step. Semantic Web Journal, 7(2), 213–227.CrossRefGoogle Scholar
  19. Castillo, C., Mendoza, M., & Poblete, M. (2013). Predicting information credibility in time-sensitive social media. Internet Research, 23(5), 560–588. CrossRefGoogle Scholar
  20. Chamales, G. (2013). Towards trustworthy social media and crowdsourcing. Wilson Center Commons Lab, available at:
  21. Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., & Zeinalipour-Yazti, D. (2012). Crowdsourcing with smartphones. Internet Computing, IEEE, 16(5), 36–44.CrossRefGoogle Scholar
  22. Chon, Y., Lane, N.D., Li, F., Cha, H., & Zhao, F. (2012). Automatically characterizing places with opportunistic crowdsensing using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing 2012: 481–490.Google Scholar
  23. Ciancio, G., & Dennett, A. (2015). Social media for government services: A case study of human services. In S. Nepal, C. Paris, & D. Georgakopoulos (eds.), Social Media for Government Services (pp. 25–49). Springer International Publishing.Google Scholar
  24. Chowdhury, R.S., Imran, M., Asghar, M.R., Amer-Yahia, S. & Castillo, C., (2013). Tweet4act: Using incident-specific profiles for classifying crisis-related messages. In 10th International ISCRAM Conference, available at:
  25. Collier, W. M., Jacobs, K. R., Saxena, A., Baker-Gallegos, J., Carroll, M., & Yohe, G. W. (2009). Strengthening socio-ecological resilience through disaster risk reduction and climate change adaptation: identifying gaps in an uncertain world. Environmental Hazards, 8(3), 171–186.CrossRefGoogle Scholar
  26. Coppola, D. P. (2011). Introduction to international disaster management. Burlington: Elsevier.Google Scholar
  27. de Albuquerque, J. P., Herfort, B., Brenning, A., & Zipf, A. (2015). A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. International Journal of Geographical Information Science, 29(4), 667–689.CrossRefGoogle Scholar
  28. Dawood, M. S., Suganya, J., Devi, R. K., & Athisha, G. (2013). A review on wireless sensor network protocol for disaster management. International Journal of Computer Applications Technology and Research, 2(2), 141–146.CrossRefGoogle Scholar
  29. Digital Humanitarian Network (2012a). Guidance for Collaborating with Volunteer and Technical Communities,
  30. Digital Humanitarian Network (2012b). Guidance for Collaborating with Formal Humanitarian Organizations,
  31. Doan, A., Ramakrishnan, R., & Halevy, A. Y. (2011). Crowdsourcing systems on the world-wide web. Communications of the ACM, 54(4), 86–96.CrossRefGoogle Scholar
  32. Duc, K.N., Vu, T.T., & Ban, Y. (2014). Ushahidi and Sahana Eden Open-Source Platforms to Assist Disaster Relief: Geospatial Components and Capabilities. In Geoinformation for Informed Decisions, Springer International Publishing: Berlin 163–174.Google Scholar
  33. Ducao, A.A.B (2013). OpenIR [Open Infrared]: enhancing environmental monitoring through accessible remote sensing, in Indonesia and beyond (Doctoral dissertation, Massachusetts Institute of Technology).Google Scholar
  34. Estellés-Arolas, E., & González-Ladrón-de-Guevara, F. (2012). Towards an integrated crowdsourcing definition. Journal of Information Science, 38(2), 189–200.CrossRefGoogle Scholar
  35. Fan, Z., & Zlatanova, S. (2011). Exploring ontologies for semantic interoperability of data in emergency response. Applied Geomatics, 3(2), 109–122.CrossRefGoogle Scholar
  36. Garcia-Santa, N., García-Cuesta, E., & Villazón-Terrazas, B. (2016). Controlling and monitoring crisis, the semantic web: ESWC 2015 satellite events. LNCS, 9341, 46–50.Google Scholar
  37. Geiger, D., Seedorf, S., Schulze, T., Nickerson, R.C., & Schader, M. (2011). Managing the crowd: Towards a Taxonomy of Crowdsourcing processes. In AMCIS 2011 Aug 4, available at:
  38. Gómez, D., Bernardos, A.M, Portillo, J.I., Tarrío, P., & Casar, J.R. (2013). A review on mobile applications for citizen emergency management. In Highlights on Practical Applications of Agents and Multi-Agent Systems, 190–201.Google Scholar
  39. Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  40. Grolinger, K., Brown, K.P., & Capretz, M.A.M. (2011). From Glossaries to Ontologies: Disaster Management Domain. International Conference on Software Engineering and Knowledge Engineering 2011, Miami Beach, Florida, available at:
  41. Gupta, A., Kumaraguru, P., Castillo, C., & Meier, P. (2014). TweetCred: real-time credibility assessment of content on Twitter. eprint arXiv:1405.5490 2014arXiv1405.5490G.Google Scholar
  42. Haklay, M. (2013). Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing geographic knowledge: 105–122.Google Scholar
  43. Hall, S. (2010). Taxonomy for text messages,
  44. Harvard Humanitarian Initiative (2014). Kobotoolbox, available at
  45. Hassan, M. K. A., & Chen-Burger, Y. H. (2016). A communication and tracking ontology for mobile systems in the event of a large scale disaster. In Agent and Multi-Agent Systems: Technology and Applications: 119–137.Google Scholar
  46. Hetmank, L. (2013). Components and Functions of Crowdsourcing Systems-A Systematic Literature Review. Wirtschaftsinformatik, available at:
  47. Hossain, M., & Kauranen, I. (2015). Crowdsourcing: a comprehensive literature review. Strategic Outsourcing: An International Journal, 8(1), 2–2.CrossRefGoogle Scholar
  48. Howe, J. (2006). The rise of crowdsourcing. Wired magazine, 14(6), 1–4.Google Scholar
  49. Howe, J. (2008). Crowdsourcing: How the power of the crowd is driving the future of business. New York: Crown Publishing Group.Google Scholar
  50. Hutchins, E. (1995). Cognition in the wild. Massachusetts: MIT press.Google Scholar
  51. Imran, M., Elbassuoni, S.M., Castillo, C., Diaz, F., & Meier, P. (2013). Extracting information nuggets from disaster-related messages in social media. Proceedings of ISCRAM, Baden-Baden, Germany, available at:
  52. Imran, M., Castillo, C., Lucas, J., Meier, P., & Vieweg, S. (2014). AIDR: Artificial intelligence for disaster response. In Proceedings of the 23rd International Conference on World Wide Web (pp. 159–162).Google Scholar
  53. Imran, M., Castillo, C., Diaz, F., & Vieweg, S. (2015). Processing social media messages in mass emergency: a survey. ACM Computing Surveys, 47(4), 67.CrossRefGoogle Scholar
  54. ISO, ISO/IEC 25012:2008 (2009). Software engineering. Software product quality requirements and evaluation (SQuaRE). Data quality model, Report, International Organization for Standarization.Google Scholar
  55. Jadhav A.S., Wang, W., Mutharaju, R, Anantharam, P., Nguyen, V., Sheth, A.P., Gomadam, K., Nagarajan, M., & Ranabahu, A.H. (2013). Twitris: socially influenced browsing,
  56. Jennett, C., & Cox, A.L. (2014). Eight guidelines for designing virtual citizen science projects. In Second AAAI Conference on Human Computation and Crowdsourcing.Google Scholar
  57. Jung, C. (2011). Data collection mobile systems: A review of the current state of the field. Available at:
  58. Kalabokidis, K., Athanasis, N., & Vaitis, M. (2011). OntoFire: an ontology-based geo-portal for wildfires. Natural Hazards and Earth System Science, 11(12), 3157–3170.CrossRefGoogle Scholar
  59. Kennedy, M. D. (2013). Introducing geographic information systems with ARCGIS: A workbook approach to learning GIS. Hoboken: John Wiley & Sons.Google Scholar
  60. Keßler, C., & Hendrix, C. (2015). The humanitarian exchange language: coordinating disaster response with semantic web technologies. Semantic Web, 6(1), 5–21.Google Scholar
  61. Kjærgaard, M.B., Wirz, M., Roggen, D., & Tröster, G. (2012). Detecting pedestrian flocks by fusion of multi-modal sensors in mobile phones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing 2012, 240–249.Google Scholar
  62. Klien, E., Lutz, M., & Kuhn, W. (2006). Ontology-based discovery of geographic information services—an application in disaster management. Computers, Environment and Urban Systems, 30(1), 102–123.CrossRefGoogle Scholar
  63. Kokar, M. M., Matheus, C. J., & Baclawski, K. (2009). Ontology-based situation awareness. Information fusion, 10(1), 83–98.CrossRefGoogle Scholar
  64. Kong, Q., Allen, R. M., Schreier, L., & Kwon, Y. W. (2016). MyShake: a smartphone seismic network for earthquake early warning and beyond. Science Advances, 2(2), e1501055.CrossRefGoogle Scholar
  65. Korenblum, J., & Andemariam, B. (2011). Cell phones and conflict zones: How souktel uses SMS technology to empower and aid in conflict-affected communities. In M. Poblet (Ed.), Mobile Technologies for Conflict Management (pp. 67–78). Netherlands: Springer.CrossRefGoogle Scholar
  66. Lane, N.D., Eisenman, S.B., Musolesi, M., Miluzzo, E., Campbell, A.T. (2008). Urban sensing systems: opportunistic or participatory? In Proceedings of the 9th workshop on Mobile computing systems and applications, 11–16.Google Scholar
  67. Lee, J., Agrawal, M., & Rao, H. R. (2015). Message diffusion through social network service: the case of rumor and non-rumor related tweets during Boston bombing 2013. Information Systems Frontiers, 17(5), 997–1005.CrossRefGoogle Scholar
  68. Lévy, P. (1997). L’intelligence collective. Pour une anthropologie du cyberspace. Paris: La Découverte.Google Scholar
  69. Li, J., & Rao, H. R. (2008). Twitter as a rapid response news service: an exploration in the context of the 2008 China earthquake. The Electronic Journal of Information Systems in Developing Countries, 42, 1–22.CrossRefGoogle Scholar
  70. Li, L., & Li, T. (2014). An empirical study of ontology-based multi-document summarization in disaster management. IEEE Transactions Systems, Man, and Cybernetics: Systems, 44(2), 162–171.CrossRefGoogle Scholar
  71. Lin, A. Y. M., Huynh, A., Lanckriet, G., & Barrington, L. (2014). Crowdsourcing the unknown: the satellite search for Genghis khan. PloS One, 9(12), 114046.CrossRefGoogle Scholar
  72. Liu, M. (2013). A study of mobile sensing using smartphones. International Journal of Distributed Sensor Networks. doi: 10.1155/2013/272916.CrossRefGoogle Scholar
  73. Liu, S. B. (2014). Crisis crowdsourcing framework: designing strategic configurations of crowdsourcing for the emergency management domain. Computer Supported Cooperative Work, 23(4–6), 389–443.CrossRefGoogle Scholar
  74. Liu, S.B., Poore, B.S., Snell, R.J., Goodman, A., Plant, N.G., Stockdon, H.F., Morgan, K.L., & Krohn, M.D. (2014). USGS iCoast--did the coast change?: designing a crisis crowdsourcing App to validate coastal change models. In Proceedings of the companion publication of the 17th ACM conference on Computer supported cooperative work & social computing: 17–20.Google Scholar
  75. Liu, S., Shaw, D., Brewster, C. (2013). Ontologies for crisis management: a review of state of the art in ontology design and usability. In Proceedings of the Information Systems for Crisis Response and Management conference (ISCRAM 2013), available at:
  76. Loreto, I.D., Mora, S., & Divitini, M. (2012). Collaborative serious games for crisis management: an overview. In Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE): 352–357.Google Scholar
  77. Luz, N., Poblet, M., Silva, N., & Novais, P. (2015). Defining human-machine micro-task workflows for constitution making. In B. Kamiński, G.E. Kersten & T. Szapiro (Eds.), Outlooks and Insights on Group Decision and Negotiation. Lecture Notes in Business Information Processing, 218, 333–344.Google Scholar
  78. Malone, T.W. (2008). What is collective intelligence and what will we do about it. In M. Tovey (Ed.), Collective Intelligence: Creating a Prosperous World at Peace, Earth Intelligence Network (pp. 1–4) Oakton, Virginia: EIN Press.Google Scholar
  79. Malone, T.W., Laubacher, R., & Dellarocas, C. (2009). Harnessing crowds: Mapping the genome of collective intelligence. MIT Sloan Research Paper, 4732–09, available at:
  80. Mansourizadeh, M., & Gharooni, M. (2013). A review of semantic mapping techniques of natural disaster ontologies. In Information and Knowledge Technology (IKT), 332–337).Google Scholar
  81. Mason, C. & Power, R. (2015). Improving social media monitoring and analysis tools for emergency management. In T. Weber, M.J. McPhee and R.S. Anderssen (eds), MODSIM2015, 21st International Congress on Modelling and Simulation (pp. 1195–1201).Google Scholar
  82. Meera, P., McLain, M.L., Bijlani, K., Jayakrishnan, R., & Rao, B.R. (2016). Serious game on flood risk management. In Emerging Research in Computing, Information, Communication and Applications, 197–206.Google Scholar
  83. Meesters, K., & Van de Walle, B. (2014). Serious gaming for user centered innovation and adoption of disaster response information systems. International Journal of Information Systems for Crisis Response and Management, 6(2), 1–5.CrossRefGoogle Scholar
  84. Meier, P. (2011). Why bounded Crowdsourcing is important for crisis mapping and beyond. iRevolution, available at:
  85. Meier, P. (2013a). Verily: Crowdsourced verification for disaster response. In: iRevolution, available at:
  86. Meier, P. (2013b). GeoFeedia: Ready for Digital Disaster Response. Irevolutions,
  87. Merino, J., Caballero, I., Rivas, B., Serrano, M., & Piattini, M. (2015). A data quality in use model for big data. Future Generation Computer Systems. doi: 10.1016/j.future.2015.11.024.CrossRefGoogle Scholar
  88. Michelucci, P. (Ed.). (2013). Handbook of human computation. New York: Springer.Google Scholar
  89. Murgante, B., Scardaccione, G., & Las Casas, G. (2009). Building ontologies for disaster management: seismic risk domain. Urban and Regional Data Management, 1, 259–269.Google Scholar
  90. Nakatsu, R. T., Grossman, E. B., & Iacovou, C. L. (2014). A taxonomy of crowdsourcing based on task complexity. Journal of Information Science, 40(6), 823–834.CrossRefGoogle Scholar
  91. Naroditskiy, V., Rahwan, I., Cebrian, M., & Jennings, N. R. (2012). Verification in referral-based crowdsourcing. PloS One, 7(10).CrossRefGoogle Scholar
  92. Noubel, J.F. (2004). Collective intelligence, the invisible revolution., available at:
  93. Ofli, F., Meier, P., Imran, M., Castillo, C., Tuia, D., Rey, N., Briant, J., Millet, P., Reinhard, F., Parkan, M., & Joost, S. (2016). Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data, 4(1), 47–59.CrossRefGoogle Scholar
  94. Ortmann, J., Limbu, M., Wang, D., & Kauppinen, T. (2011). Crowdsourcing linked open data for disaster management. In Proceedings of the Terra Cognita Workshop on Foundations, Technologies and Applications of the Geospatial Web in conjunction with the ISWC, 11–22, available at:
  95. Ostrom, E. (2010). Polycentric systems for coping with collective action and global environmental change. Global Environmental Change, 4, 550–557.CrossRefGoogle Scholar
  96. Ostrom, E., Janssen, M. A., & Anderies, J. M. (2007). Going beyond panaceas. Proceedings of the National Academy of Sciences, 39, 15176–15178.CrossRefGoogle Scholar
  97. Othman, S. H., & Beydoun, G. (2013). Model-driven disaster management. Information & Management, 50(5), 218–228.CrossRefGoogle Scholar
  98. Parsons, S., Atkinson, P.M., Simperl, E., & Weal, M. (2015). Thematically Analysing Social Network Content During Disasters Through the Lens of the Disaster Management Lifecycle. In Proceedings of the 24th International Conference on World Wide Web Companion 2015 May 18: 1221–1226.Google Scholar
  99. Peckham, M. (2012). 6 Apps for Tracking Hurricane Isaac with Your Tablet or Smartphone. Time, 27 Aug 2012, available at:
  100. Poblet, M. (2011a). Rule of law on the go: new developments of mobile governance. JUCS, 17(3), 498–512. doi: 10.3217/jucs-017-03-0498.CrossRefGoogle Scholar
  101. Poblet, M. (ed.) (2011b). Mobile Technologies for Conflict Management: Online Dispute Resolution, Governance, Participation. Springer Science & Business Media; 2011.Google Scholar
  102. Poblet, M., Leshinsky, R., & Zeleznikow, J. (2012). Digital neighbours: even good Samaritan crisis mappers need strategies for legal liability. Planning News, 38(11), 20.Google Scholar
  103. Popoola, A., Krasnoshtan, D., Toth, A. P., Naroditskiy, V., Castillo, C., Meier, P., & Rahwan, I. (2013). Information verification during natural disasters. In Proceedings of the 22nd International Conference on World Wide Web: 1029–1032.Google Scholar
  104. Power, R., Robinson, B., & Ratcliffe, D. (2013). Finding fires with twitter. In Australasian Language Technology Association Workshop 2013, (80), 80–89, available at:
  105. Power, R., Robinson, B., & Wise, C. (2015). Using crowd sourced content to help manage emergency events. In S. Nepal, C. Paris, & D. Georgakopoulos (Eds.), Social Media for Government Services: A case study of human services (pp. 247–270). Hoboken: Springer International Publishing.CrossRefGoogle Scholar
  106. Pranantyo, I.R., Fadmastuti, M., & Chandra, F. (2015). InaSAFE applications in disaster preparedness. In 4th International Symposium on Earthquake and Disaster Mitigation, 1658 (1): 060001.Google Scholar
  107. Prpic, J., & Shukla P. (2013). The theory of crowd capital. In System Sciences (HICSS), 2013 46th Hawaii International Conference on 2013 Jan 7: 3505–3514.Google Scholar
  108. Purohit, H., Castillo, C., Diaz, F., Sheth, A., & Meier, P. (2013). Emergency-relief coordination on social media: automatically matching resource requests and offers. First Monday, 19(1).Google Scholar
  109. Purohit, H., Hampton, A., Bhatt, S., Shalin, V. L., Sheth, A. P., & Flach, J. M. (2014). Identifying seekers and suppliers in social media communities to support crisis coordination. Computer Supported Cooperative Work, 23(4–6), 513–545.CrossRefGoogle Scholar
  110. Pwint Phyu, H. (2010). GeoChat manual, Mekong Basin Disease Surveillance,
  111. Quinn, A. J., & Bederson, B. B. (2011). Human computation: a survey and taxonomy of a growing field. In Proceedings of the SIGCHI conference on human factors in computing systems, 1403–1412.Google Scholar
  112. Radianti, J., Granmo, O.C., Bouhmala, N., Sarshar, P., Yazidi, A., & Gonzalez, J. (2013). Crowd models for emergency evacuation: A review targeting human-centered sensing. In System Sciences (HICSS), 2013 46th Hawaii International Conference on 2013 Jan 7, 156–165.Google Scholar
  113. Ratnam, K.R., & Karunaratne, D.D. (2008). Application of Ontologies in Disaster Management, available at:
  114. Robinson, B., Power, R., & Cameron, M. (2013). A sensitive Twitter earthquake detector. In Proceedings of the 22nd international conference on World Wide Web companion, 999–1002, available at:
  115. Rogstadius, J., Vukovic, M., Teixeira, C. A., Kostakos, V., Karapanos, E., & Laredo, J. A. (2013). CrisisTracker: crowdsourced social media curation for disaster awareness. IBM Journal of Research and Development, 57(5), 4–1.CrossRefGoogle Scholar
  116. Sakaki, T., Okazaki, M., & Matsuo, Y. (2013). Tweet analysis for real-time event detection and earthquake reporting system development. Knowledge and Data Engineering, IEEE Transactions, 25(4), 919–931. doi: 10.1109/TKDE.2012.29.CrossRefGoogle Scholar
  117. Salminen J. (2012). Collective intelligence in humans: A literature review. arXiv preprint arXiv:1204.3401.Google Scholar
  118. Sánchez de Miguel, A., Gomez Castaño, J., Lombraña, D., Zamorano, J., & Gallego, J. (2015). Cities at night: citizens science to rescue an archive for the science. IAU General Assembly, 22, 51113.Google Scholar
  119. Saxton, G. D., Oh, O., & Kishore, R. (2013). Rules of crowdsourcing: models, issues, and systems of control. Information Systems Management, 30(1). doi: 10.3917/jie.007.009.
  120. Schenk, E., & Guittard, C. (2011). Towards a characterization of crowdsourcing practices. Journal of Innovation Economics & Management, 1, 93–107.CrossRefGoogle Scholar
  121. Schmidt, M., & Weiser, P. (2012). Web mapping services: development and trends. In M. Peterson (Ed.), Online maps with APIs and WebServices (pp. 13–21). Berlin Heidelberg: Springer.Google Scholar
  122. Shih, F., Seneviratne, O., Liccardi, I., Patton, E., Meier, P., & Castillo, C. (2013). Democratizing mobile app development for disaster management. In Joint Proceedings of the Workshop on AI Problems and Approaches for Intelligent Environments and Workshop on Semantic Cities 2013: 39–42. doi:  10.1145/2516911.2516915.
  123. Sheth, A., Jadhav, A., Kapanipathi, P., Lu, C., Purohit, H., Smith, G. A., & Wang, W. (2014). Twitris: A system for collective social intelligence. In R. Alhajj & J. Rokne (Eds.), Encyclopedia of social network analysis and mining (pp. 2240–2253). New York: Springer.Google Scholar
  124. Tang, J. C., Cebrian, M., Giacobe, N. A., Kim, H. W., Kim, T., & Wickert, D. B. (2011). Reflecting on the DARPA red balloon challenge. Communications of the ACM, 54(4), 78–85. doi: 10.1145/1924421.1924441.CrossRefGoogle Scholar
  125. Takahashi, B., Tandoc, E. C., & Carmichael, C. (2015). Communicating on twitter during a disaster: an analysis of tweets during typhoon Haiyan in the Philippines. Computers in Human Behavior, 50, 392–398.CrossRefGoogle Scholar
  126. Teo, T. A., Wu, H. M., Shih, T. Y., & Tsai, F. (2014). The analysis of smartphone apps in geomatics education. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(6), 93.CrossRefGoogle Scholar
  127. UNISDR. (2009). Terminology, available at:
  128. UN-SPIDER. (2014). Glossary, disaster management, available at:
  129. Von Ahn, L., Blum, M., Hopper, N.J., Langford, J. (2003). CAPTCHA: Using hard AI problems for security. Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2003) 294–311.Google Scholar
  130. Von Ahn, L., & Dabbish, L. (2008). Designing games with a purpose. Communications of the ACM, 51(8), 58–67. doi: 10.1145/1378704.1378719.CrossRefGoogle Scholar
  131. Von Ahn (2013). Duolingo: Learn a language for free while helping to translate the web. 18th International Conference on Intelligent User Interfaces 1—2. doi:  10.1145/2449396.2449398.
  132. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., & Blum, M. (2008). reCAPTCHA: Human-based character recognition via web security measures. Science, 321(5895), 1465–1468.CrossRefGoogle Scholar
  133. Wallen, C., & Torbet, N. (2016). Mobile Technology in Mine Action: the fulcrum application. Journal of Conventional Weapons Destruction, 20(2), 6.Google Scholar
  134. Wan, S., Paris, C., & Georgakopoulos, D. (2015). Improving government services using social media feedback. In Social Media for Government Services: 221–246.Google Scholar
  135. Whipkey, K., & Verity, A. (2015). Guidance for incorporating Big Data into humanitarian operations. Digital Humanitarian Network document. Available at
  136. Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a Collective Intelligence Factor in the Performance of Human Groups. Science, 330(6004), 686–688.CrossRefGoogle Scholar
  137. World Wildlife Fund. (2013). PADDDtracker: Tracking protected area downgrading, downsizing, and Degazettement [Beta version]. Washington, DC: World Wildlife Fund.Google Scholar
  138. Xu, W., & Zlatanova, S. (2007). Ontologies for disaster management response. In Geomatics Solutions for Disaster Management, 2007, 185–200. doi: 10.1007/978-3-540-72108-6_13.CrossRefGoogle Scholar
  139. Yusuf, J. C. M., Boursier, P., Su’ud, M. M., & Alam, M. (2012). Extensive overview of an ontology-based architecture for accessing multi-format information for disaster management. In Information Retrieval & Knowledge Management (CAMP): 294–299.Google Scholar
  140. Zhao, Y., & Zhu, Q. (2014). Evaluation on crowdsourcing research: current status and future direction. Information Systems Frontiers, 16(3), 417–434. doi: 10.1007/s10796-012-9350-4.CrossRefGoogle Scholar
  141. Zhang, C., Zhao, T. & Li, W. (2015). Volunteered Geographic Information (VGI) systems and their interactions with Geospatial Semantic Web. In Geospatial Semantic Web. Springer International Publishing: 117–136.Google Scholar
  142. Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25–32. doi: 10.1109/MC.2005.297.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.RMIT UniversityMelbourneAustralia
  2. 2.Computer Science DepartmentUniversidad Europea de MadridVillaviciosa de OdónSpain
  3. 3.UAB Institute of Law and TechnologyBellaterraSpain
  4. 4.Data to Decisions Cooperative Research CentreDeakin UniversityGeelongAustralia

Personalised recommendations